For the regeneration of spent graphite: The exploring of structural failure mechanism about commercial graphite

石墨 锂(药物) 再生(生物学) 离子 相(物质) 扩散 碳纤维 材料科学 自行车 化学工程 纳米技术 复合材料 细胞生物学 化学 生物 物理 复合数 工程类 有机化学 内分泌学 考古 医学 热力学 历史
作者
Peng Ge,Zhengqiao Yuan,Chenxing Yi,Wei Sun,Yue Yang
出处
期刊:Materials today sustainability [Elsevier BV]
卷期号:27: 100825-100825 被引量:1
标识
DOI:10.1016/j.mtsust.2024.100825
摘要

Along with the wide application of electric automobiles, the great "wave" of recycling for lithium-ion batteries would be upcoming due to their limited cycling lifespan. As the main components but without valuable elements, spent graphite suffers from effective recycling manners. Although the regeneration method has been deemed as a promising manner, the clarifying of their failure mechanism is prerequisite to the exploring of regeneration methods. Herein, commercial graphite with different healthy states is prepared through the disassembling of cells at different cycles. Assisted by the detailed structural analysis, the systematic failure process is clearly illustrated. At initial cycling, the shuttling of lithium ions renders the decomposing of unstable carbon atoms and some weak interlayer structures. With further cycling, the interlayer architecture and large-size grains were further damaged, to form small-size grains, accompanying enhanced anisotropy, finally resulting in the increasing internal resistance. Moreover, owing to the ion-diffusion behaviors, graphite sheets have an obvious moving, resulting in the transformation from 2H-phase to 3R-phase with the decreasing of energy-storage activity. Thus, from the perspective of internal structure, the decreasing of graphitized grains and the formation of 3R-phase served as crucial failure factors. Given this, the work is anticipated to illustrate the failure mechanism of graphite, meanwhile offering the basic regeneration direction of spent graphite samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shxxy123完成签到 ,获得积分10
1秒前
洋洋呀完成签到,获得积分10
2秒前
XiaoYuuu完成签到,获得积分10
2秒前
个性的紫菜应助羚羊采纳,获得10
3秒前
3秒前
4秒前
wujnghao完成签到,获得积分10
4秒前
4秒前
4秒前
机灵从筠发布了新的文献求助10
5秒前
wanci应助huojujiangguo采纳,获得10
5秒前
6秒前
梅残风暖发布了新的文献求助10
6秒前
7秒前
7秒前
领导范儿应助小何采纳,获得10
7秒前
桐桐应助杨杨采纳,获得10
7秒前
星辰大海应助挚终采纳,获得10
8秒前
ant完成签到,获得积分10
8秒前
8秒前
9秒前
fc发布了新的文献求助10
9秒前
10秒前
淡人发布了新的文献求助10
10秒前
研友_ZGR70n完成签到 ,获得积分10
11秒前
123关闭了123文献求助
11秒前
Mx_Zhao完成签到 ,获得积分10
11秒前
11秒前
12秒前
星辰大海应助个性的饼干采纳,获得10
12秒前
清清甜发布了新的文献求助10
13秒前
13秒前
15秒前
CipherSage应助叁月二采纳,获得10
15秒前
科研通AI5应助杨杨采纳,获得10
17秒前
17秒前
17秒前
儒雅的诗兰完成签到,获得积分10
18秒前
刘振岁发布了新的文献求助20
18秒前
智智发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4738251
求助须知:如何正确求助?哪些是违规求助? 4090187
关于积分的说明 12652140
捐赠科研通 3799354
什么是DOI,文献DOI怎么找? 2097936
邀请新用户注册赠送积分活动 1123561
科研通“疑难数据库(出版商)”最低求助积分说明 998821