清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Joint Objective and Subjective Fuzziness Denoising for Multimodal Sentiment Analysis

接头(建筑物) 计算机科学 降噪 人工智能 模式识别(心理学) 机器学习 工程类 建筑工程
作者
Xun Jiang,Xing Xu,Huimin Lu,Lianghua He,Heng Tao Shen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tfuzz.2024.3405541
摘要

Multimodal Sentiment Analysis (MSA) aims at teaching computers or robotics to understand human sentiment with diverse multimodal signals, including audio, vision, and text. Current MSA approaches primarily concentrate on devising fusion strategies for multimodal signals and trying to learn better multimodal joint representations. However, employing multimodal signals directly is not appropriate since the human psychological states are fuzzy and can not be categorized easily, which undermines the effectiveness of existing methods. In this paper, we regard the natural fuzziness of human sentiments can be observed as two types: objective fuzziness introduced by human expression and subjective fuzziness caused by the complexity of human affection. Based on the assumption, we proposed a novel method termed Joint Objective and Subjective Fuzziness Denoising (JOSFD) , which introduced fuzzy logic into the multimodal fusion process and sentiment decision process to overcome the objective and subjective fuzziness. Specifically, our JOSFD method contains two key modules: (1) Modality-Specific Fuzzification Module leveraging uncertainty estimation and fuzzy logic to overcome the influence of objective fuzziness in different modalities in multimodal fusion. (2) Attitude-Intensity Representation Disentangling that learns joint representations for human attitude and sentiment strength separately and further employs fuzzy logic to decide the sentiment analysis results. We evaluate our proposed JOSFD method on three widely used MSA benchmark datasets, CMU-MOSI, CMU-MOSEI, and CH-SIMS. Extensive experiments demonstrate our proposed JOSFD method outperforms recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
李星星发布了新的文献求助10
9秒前
席江海完成签到,获得积分10
18秒前
1分钟前
lixiniverson完成签到 ,获得积分0
1分钟前
WebCasa应助科研通管家采纳,获得10
2分钟前
依人如梦完成签到 ,获得积分10
2分钟前
2分钟前
缥缈傲南发布了新的文献求助10
2分钟前
2分钟前
yyy2025完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李星星发布了新的文献求助10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
不安的听寒完成签到 ,获得积分10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得30
4分钟前
4分钟前
Zhaowx完成签到,获得积分10
4分钟前
空2完成签到 ,获得积分0
4分钟前
晨雾锁阳完成签到,获得积分10
4分钟前
单薄的钢笔完成签到,获得积分10
4分钟前
刘雪完成签到 ,获得积分10
5分钟前
Jasper应助hanj采纳,获得10
5分钟前
啦啦完成签到 ,获得积分10
5分钟前
CAOHOU应助dara采纳,获得10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
6分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
WebCasa应助科研通管家采纳,获得10
6分钟前
6分钟前
dara完成签到,获得积分10
6分钟前
gwbk完成签到,获得积分10
6分钟前
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091887
求助须知:如何正确求助?哪些是违规求助? 3630634
关于积分的说明 11507619
捐赠科研通 3341874
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904830
科研通“疑难数据库(出版商)”最低求助积分说明 822585