亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy

医学 化学免疫疗法 无线电技术 病态的 肺癌 新辅助治疗 肿瘤科 癌症 放射科 内科学 免疫疗法 乳腺癌
作者
Fang Wang,Hong Yang,Wujie Chen,Lei Ruan,Tingting Jiang,Lei Cheng,Haitao Jiang,Min Fang
出处
期刊:Current Problems in Cancer [Elsevier BV]
卷期号:50: 101098-101098 被引量:1
标识
DOI:10.1016/j.currproblcancer.2024.101098
摘要

To investigate the relationship between clinical pathological characteristics, pretreatment CT radiomics, and major pathologic response (MPR) of non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy, and to establish a combined model to predict the major pathologic response of neoadjuvant chemoimmunotherapy. A retrospective study of 211 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy and surgical treatment from January 2019 to April 2021 was conducted. The patients were divided into two groups: the MPR group and the non-MPR group. Pre-treatment CT images were segmented using ITK SNAP software to extract radiomics features using Python software. Then a radiomics model, a clinical model, and a combined model were constructed and validated using a receiver operating characteristic (ROC) curve. Finally, Delong's test was used to compare the three models. The radiomics model achieved an AUC of 0.70 (95 % CI: 0.62-0.78) in the training group and 0.60 (95 % CI: 0.45-0.76) in the validation group. RECIST assessment results were screened from all clinical characteristics as independent factors for MPR with multivariate logistic regression analysis. The AUC of the clinical model for predicting MPR was 0.66 (95 % CI: 0.59-0.73) in the training group and 0.77 (95 % CI: 0.66-0.87) in the validation group. The combined model with combined radiomics and clinicopathological characteristics achieved an AUC was 0.76 (95 % CI: 0.68-0.84) in the training group, and 0.80 (95 % CI: 0.67-0.92) in the validation group. Delong's test showed that the AUC of the combined model was significantly higher than that of the radiomics model alone in both the training group (P = 0.0067) and the validation group (P = 0.0009).The calibration curve showed good agreement between predicted and actual MPR. Clinical decision curve analysis showed that the combined model was superior to radiomics alone. Radiomics model can predict MPR in NSCLC after neoadjuvant chemoimmunotherapy with similar accuracy to RECIST assessment criteria. The combined model based on pretreatment CT radiomics and clinicopathological features showed better predictive power than independent radiomics model or independent clinicopathological features, suggesting that it may be more useful for guiding personalized neoadjuvant chemoimmunotherapy treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Ulrica采纳,获得10
3秒前
我是你爹完成签到,获得积分10
12秒前
ainibb完成签到 ,获得积分10
14秒前
18秒前
Cheny完成签到,获得积分10
20秒前
Ulrica发布了新的文献求助10
23秒前
gttlyb完成签到,获得积分10
28秒前
YifanWang完成签到,获得积分0
30秒前
34秒前
汉堡包应助科研通管家采纳,获得10
36秒前
斯寜应助科研通管家采纳,获得10
36秒前
斯寜应助科研通管家采纳,获得10
36秒前
39秒前
卡卡咧咧发布了新的文献求助10
53秒前
热情的寄瑶完成签到 ,获得积分10
54秒前
55秒前
爱看文献的小恐龙完成签到,获得积分10
1分钟前
皮本皮发布了新的文献求助10
1分钟前
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
科研通AI2S应助Ulrica采纳,获得10
1分钟前
皮本皮完成签到,获得积分10
1分钟前
慕青应助知足的憨人*-*采纳,获得10
1分钟前
科研螺丝完成签到 ,获得积分10
1分钟前
610完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ulrica发布了新的文献求助10
1分钟前
gg发布了新的文献求助10
1分钟前
1分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
right完成签到 ,获得积分10
2分钟前
2分钟前
等待的花生完成签到,获得积分10
2分钟前
动漫大师发布了新的文献求助10
2分钟前
gg完成签到,获得积分20
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
无限鸵鸟应助科研通管家采纳,获得100
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215