MFMANet: Multi-feature Multi-attention Network for efficient subtype classification on non-small cell lung cancer CT images

模式识别(心理学) 肺癌 特征(语言学) 计算机科学 人工智能 局部二进制模式 腺癌 特征向量 癌症 医学 病理 图像(数学) 内科学 直方图 语言学 哲学
作者
Hanguang Xiao,Qiyuan Liu,Li Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104768-104768 被引量:12
标识
DOI:10.1016/j.bspc.2023.104768
摘要

Lung cancer is one of the most prevalent diseases worldwide, being the most common type of cancer. Non-small cell lung cancer (NSCLC) with a five-year survival rate of less than 20% and widely varying treatment modalities is diagnosed in more than 85% of cases. In this study, a multi-feature multi-attention network (MFMANet) was proposed for NSCLC subtype classification to address the problem of low classification accuracy between subtypes due to small lesion size and similar background. In MFMANet, the multi-scale spatial channel attention module (MSAM) and multi-feature fusion global local attention module (MFGLA), are proposed. MSAM is able to preserve spatial features during channel feature fusion to capture high-order statistical information. MFGLA performs effective fusion of multiple features to avoid interference caused by scale differences. The global and local information is extracted by global and local attention branches to enhance the perception of small lesion regions. The performance of the proposed MFMANet was validated on two public datasets and compared with other classification networks including ResNet18, ShuffleNetv2, MobileNetv3, and MnasNet. MFMANet achieved 99.06% and 91.67% accuracy in the binary classification of CT images of lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SCC), outperforming other methods. This study confirms that the proposed MFMANet provides effective solution for the subtypes classification of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tong完成签到,获得积分20
刚刚
领导范儿应助Erling采纳,获得10
刚刚
nnnaaaa完成签到,获得积分10
1秒前
Owen应助zouwenting采纳,获得10
1秒前
1秒前
Eurus发布了新的文献求助30
1秒前
调皮尔容发布了新的文献求助10
1秒前
陈豆豆完成签到 ,获得积分10
1秒前
搜集达人应助lulul采纳,获得10
1秒前
可爱的猪猪完成签到,获得积分10
2秒前
长成大树完成签到,获得积分10
2秒前
cy4psych0发布了新的文献求助10
2秒前
科研通AI2S应助顺心凡采纳,获得10
2秒前
3秒前
3秒前
无花果应助小树采纳,获得10
3秒前
橘色天际线完成签到,获得积分10
3秒前
HH发布了新的文献求助10
4秒前
英勇绮南完成签到,获得积分10
4秒前
隋磊完成签到,获得积分10
4秒前
Lin完成签到,获得积分10
5秒前
桐桐应助LouieHuang采纳,获得30
5秒前
5秒前
自转无风完成签到,获得积分10
5秒前
viogriffin完成签到,获得积分10
5秒前
烟花应助pxb采纳,获得10
6秒前
t通应助Yyyyyy11采纳,获得10
6秒前
Oreki完成签到,获得积分10
6秒前
沉默的婴完成签到 ,获得积分10
7秒前
HEANZ发布了新的文献求助10
7秒前
冰魂应助allenise采纳,获得10
7秒前
小刘恨香菜完成签到 ,获得积分10
8秒前
shionn完成签到,获得积分10
8秒前
8秒前
天天快乐应助zhaowei采纳,获得10
8秒前
卷啊卷完成签到 ,获得积分10
9秒前
科研通AI5应助jzm采纳,获得30
9秒前
香蕉觅云应助橙子雨采纳,获得10
11秒前
Dandanhuang完成签到,获得积分10
12秒前
12秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264942
捐赠科研通 3049958
什么是DOI,文献DOI怎么找? 1673735
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549