Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest

光合有效辐射 叶面积指数 物候学 天蓬 每年落叶的 环境科学 遥感 季节性 温带落叶林 天顶 生长季节 植被(病理学) 太阳天顶角 大气科学 地理 生态学 地质学 考古 生物 医学 植物 光合作用 病理
作者
Leticia X. Lee,Timothy G. Whitby,J. William Munger,Sophia J. Stonebrook,M. A. Friedl
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:333: 109389-109389 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109389
摘要

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI, fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empirically examined how relationships among these variables change over the growing season. In this study, we examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs, LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a refined basis for understanding how remote sensing can be used to monitor and model the phenology of LAI, fAPAR, APAR, and gross primary productivity in temperate deciduous forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
2秒前
绝尘发布了新的文献求助10
6秒前
6秒前
端庄的连碧完成签到 ,获得积分10
6秒前
行走完成签到,获得积分10
7秒前
8秒前
10秒前
bernoulli发布了新的文献求助10
11秒前
852应助能干数据线采纳,获得10
14秒前
15秒前
华仔应助神经蛙采纳,获得10
16秒前
kk发布了新的文献求助10
16秒前
17秒前
17秒前
纪复天完成签到,获得积分10
17秒前
哭泣嵩发布了新的文献求助10
17秒前
demoliu发布了新的文献求助80
19秒前
zhouleiwang发布了新的文献求助10
21秒前
纪复天发布了新的文献求助10
21秒前
gab发布了新的文献求助10
22秒前
爱吃肥牛完成签到 ,获得积分10
24秒前
领导范儿应助山山而川采纳,获得10
27秒前
Ly完成签到,获得积分10
28秒前
哭泣嵩完成签到,获得积分10
29秒前
科研通AI2S应助demoliu采纳,获得10
31秒前
科研通AI5应助heli采纳,获得30
31秒前
酷炫的幻丝完成签到 ,获得积分10
32秒前
33秒前
纯真的雁山完成签到,获得积分10
35秒前
Eternity完成签到,获得积分10
35秒前
swmyybh完成签到,获得积分10
35秒前
科目三应助结实的曲奇采纳,获得10
36秒前
38秒前
39秒前
39秒前
39秒前
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440