An active contour model driven by adaptive local pre-fitting energy function based on Jeffreys divergence for image segmentation

活动轮廓模型 分割 图像分割 计算机科学 稳健性(进化) 人工智能 计算 分歧(语言学) 能量泛函 正规化(语言学) 区域增长 尺度空间分割 算法 模式识别(心理学) 计算机视觉 数学 基因 生物化学 数学分析 哲学 语言学 化学
作者
Pengqiang Ge,Yiyang Chen,Guina Wang,Guirong Weng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118493-118493 被引量:32
标识
DOI:10.1016/j.eswa.2022.118493
摘要

Active contour model (ACM) has been a competitive tool in image segmentation because of its desired segmentation result and accuracy. Nevertheless, it may become unstable while handling images with uneven intensity, different initial contours and noise. In addition, the computation process of the majority of existing ACMs is complex, which makes it time-consuming and less efficient. To resolve above issues, this paper puts forward an active contour approach driven by adaptive local pre-fitting energy function based on Jeffreys divergence (APFJD) for image segmentation. Although the computation process of the proposed model is also complex, the authors design pre-fitting functions that are computed ahead of iteration process, which reduces a great amount of computation time and increases segmentation accuracy. The key idea of utilizing pre-fitting energy is to firstly select a local region at a specific point of the entire image region and compute its median intensity. Next, this local region is grouped into two sub-regions based on this pre-computed median intensity. Afterwards, the mean intensities of these two sub-regions are calculated by averaging their image intensities respectively. Lastly, the same process is repeated at next point until all points in the whole image region are computed. After that, these two pre-fitting functions will be incorporated into a Jeffreys divergence model to construct the proposed energy function. To further improve system stability and robustness, a regularization function is defined to optimize and normalize the data-driven term and level set function. Compared with local region-based models and recently developed models, the proposed APFJD model not only greatly decreases computation cost, but also improves segmentation accuracy. Experimental results also confirm that this model is robust to initial contours with different positions as well as Gaussian noise, and effectively segments images with unevenly distributed intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ash完成签到,获得积分10
刚刚
奋斗的青完成签到,获得积分20
1秒前
上官若男应助阿笙采纳,获得10
1秒前
LAST完成签到,获得积分10
2秒前
儒雅晓霜发布了新的文献求助10
2秒前
3秒前
Lucas应助cyw9608采纳,获得10
3秒前
奋斗的青发布了新的文献求助10
3秒前
4秒前
CipherSage应助李小宁采纳,获得10
5秒前
哈哈发布了新的文献求助30
6秒前
南海牧鲸人完成签到,获得积分10
7秒前
7秒前
Ava应助肖肖采纳,获得10
8秒前
一兜兜糖完成签到,获得积分10
8秒前
ding应助guojinyu采纳,获得10
8秒前
liwai完成签到,获得积分20
10秒前
sonya1122完成签到,获得积分10
12秒前
小二郎应助小天才采纳,获得10
15秒前
整齐硬币发布了新的文献求助10
15秒前
Molinxue完成签到,获得积分20
16秒前
16秒前
16秒前
17秒前
无花果应助重要手机采纳,获得10
17秒前
肉苁蓉完成签到 ,获得积分10
18秒前
19秒前
机智的鬼完成签到,获得积分10
19秒前
1111应助科研通管家采纳,获得20
20秒前
gm应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
英姑应助脊柱小白菜采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4511065
求助须知:如何正确求助?哪些是违规求助? 3956932
关于积分的说明 12267110
捐赠科研通 3617909
什么是DOI,文献DOI怎么找? 1990861
邀请新用户注册赠送积分活动 1027117
科研通“疑难数据库(出版商)”最低求助积分说明 918447