Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review

妊娠期糖尿病 预测建模 机器学习 怀孕 计算机科学 预测能力 人工智能 鉴定(生物学) 糖尿病 医学 生物信息学 妊娠期 内分泌学 生物 遗传学 植物 认识论 哲学
作者
Daniela Mennickent,Andrés Rodrı́guez,Marcelo Farías,Juan Araya,Enrique Guzmán‐Gutiérrez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:132: 102378-102378 被引量:25
标识
DOI:10.1016/j.artmed.2022.102378
摘要

Gestational Diabetes Mellitus (GDM) is a hyperglycemia state that impairs maternal and offspring health, short and long-term. It is usually diagnosed at 24–28 weeks of pregnancy (WP), but at that time the fetal phenotype is already altered. Machine learning (ML)-based models have emerged as an auspicious alternative to predict this pathology earlier, however, they must be validated in different populations before their implementation in routine clinical practice. This review aims to give an overview of the ML-based models that have been proposed to predict GDM before 24–28 WP, with special emphasis on their current validation state and predictive performance. Articles were searched in PubMed. Manuscripts written in English and published before January 1, 2022, were considered. 109 original research studies were selected, and categorized according to the type of variables that their models involved: medical, i.e. clinical and/or biochemical parameters; alternative, i.e. metabolites, peptides or proteins, micro-ribonucleic acid molecules, microbiota genera, or other variables that did not fit into the first category; or mixed, i.e. both medical and alternative data. Only 8.3 % of the reviewed models have had validation in independent studies, with low or moderate performance for GDM prediction. In contrast, several models that lack of independent validation have shown a very high predictive power. The evaluation of these promising models in future independent validation studies would allow to assess their performance on different populations, and continue their way towards clinical implementation. Once settled, ML-based models would help to predict GDM earlier, initiate its treatment timely and prevent its negative consequences on maternal and offspring health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜苏发布了新的文献求助10
刚刚
1秒前
JAYZHANG发布了新的文献求助10
1秒前
董石美发布了新的文献求助10
5秒前
今后应助cloud采纳,获得10
6秒前
爱科研完成签到 ,获得积分10
6秒前
6秒前
15136780701完成签到 ,获得积分10
6秒前
xie发布了新的文献求助30
7秒前
Owen应助ASC采纳,获得10
7秒前
9秒前
粗暴的曼凝完成签到 ,获得积分10
11秒前
11秒前
香蕉觅云应助纪元龙采纳,获得10
12秒前
董石美完成签到,获得积分20
13秒前
宋江他大表哥完成签到,获得积分10
15秒前
子昂加加油完成签到,获得积分10
16秒前
16秒前
xie完成签到,获得积分20
17秒前
叶叶完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
英姑应助伶俐鸽子采纳,获得10
18秒前
19秒前
静一完成签到,获得积分10
20秒前
22秒前
聪明夏山发布了新的文献求助10
23秒前
三十三天发布了新的文献求助10
23秒前
ASC发布了新的文献求助10
23秒前
24秒前
25秒前
CodeCraft应助羊肉泡馍采纳,获得10
26秒前
草木发布了新的文献求助10
26秒前
27秒前
故意的秋烟完成签到,获得积分10
28秒前
莽哥发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870497
求助须知:如何正确求助?哪些是违规求助? 3412690
关于积分的说明 10680748
捐赠科研通 3137124
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073