Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review

妊娠期糖尿病 预测建模 机器学习 怀孕 计算机科学 预测能力 人工智能 鉴定(生物学) 糖尿病 医学 生物信息学 妊娠期 内分泌学 生物 遗传学 植物 认识论 哲学
作者
Daniela Mennickent,Andrés Rodrı́guez,Marcelo Farías,Juan Araya,Enrique Guzmán‐Gutiérrez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:132: 102378-102378 被引量:29
标识
DOI:10.1016/j.artmed.2022.102378
摘要

Gestational Diabetes Mellitus (GDM) is a hyperglycemia state that impairs maternal and offspring health, short and long-term. It is usually diagnosed at 24–28 weeks of pregnancy (WP), but at that time the fetal phenotype is already altered. Machine learning (ML)-based models have emerged as an auspicious alternative to predict this pathology earlier, however, they must be validated in different populations before their implementation in routine clinical practice. This review aims to give an overview of the ML-based models that have been proposed to predict GDM before 24–28 WP, with special emphasis on their current validation state and predictive performance. Articles were searched in PubMed. Manuscripts written in English and published before January 1, 2022, were considered. 109 original research studies were selected, and categorized according to the type of variables that their models involved: medical, i.e. clinical and/or biochemical parameters; alternative, i.e. metabolites, peptides or proteins, micro-ribonucleic acid molecules, microbiota genera, or other variables that did not fit into the first category; or mixed, i.e. both medical and alternative data. Only 8.3 % of the reviewed models have had validation in independent studies, with low or moderate performance for GDM prediction. In contrast, several models that lack of independent validation have shown a very high predictive power. The evaluation of these promising models in future independent validation studies would allow to assess their performance on different populations, and continue their way towards clinical implementation. Once settled, ML-based models would help to predict GDM earlier, initiate its treatment timely and prevent its negative consequences on maternal and offspring health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
longmad完成签到,获得积分10
刚刚
张正完成签到,获得积分10
1秒前
WANG发布了新的文献求助10
1秒前
燕子完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
王昭完成签到 ,获得积分10
3秒前
jiachun完成签到,获得积分10
3秒前
lele发布了新的文献求助10
4秒前
豆豆发布了新的文献求助10
4秒前
4秒前
栗子完成签到,获得积分10
5秒前
WANG完成签到,获得积分10
5秒前
6秒前
xliiii完成签到,获得积分10
6秒前
6秒前
溧子呀发布了新的文献求助10
6秒前
青天鸟1989完成签到,获得积分10
7秒前
WNing完成签到,获得积分20
8秒前
Qi完成签到 ,获得积分10
8秒前
小章鱼完成签到,获得积分10
8秒前
9秒前
afeifei完成签到,获得积分10
9秒前
木子完成签到 ,获得积分10
10秒前
狗子爱吃桃桃完成签到 ,获得积分10
10秒前
栗子发布了新的文献求助10
10秒前
排骨炖豆角完成签到,获得积分10
11秒前
11秒前
11秒前
FashionBoy应助zc采纳,获得10
12秒前
勤奋的烨霖完成签到,获得积分10
12秒前
12秒前
12秒前
hongdongxiang完成签到,获得积分10
12秒前
娇气的冬菱完成签到,获得积分20
12秒前
QYR完成签到,获得积分10
13秒前
核桃应助豆豆采纳,获得10
13秒前
lele完成签到,获得积分20
14秒前
yhy完成签到,获得积分10
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4205333
求助须知:如何正确求助?哪些是违规求助? 3739830
关于积分的说明 11771716
捐赠科研通 3410629
什么是DOI,文献DOI怎么找? 1871412
邀请新用户注册赠送积分活动 926622
科研通“疑难数据库(出版商)”最低求助积分说明 836695