已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A variable neighborhood search-based algorithm with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots aiming for vehicle fleet reduction

车辆路径问题 局部搜索(优化) 可变邻域搜索 变量(数学) 数学优化 还原(数学) 计算机科学 算法 数学 元启发式 布线(电子设计自动化) 几何学 计算机网络 数学分析
作者
Sinaide Nunes Bezerra,Marcone Jamilson Freitas Souza,Sérgio Ricardo de Souza
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:149: 106016-106016 被引量:5
标识
DOI:10.1016/j.cor.2022.106016
摘要

This article addresses the Multi-Depot Vehicle Routing Problem with Time Windows with the minimization of the number of used vehicles, denominated as MDVRPTW*. This problem is a variant of the classical MDVRPTW, which only minimizes the total traveled distance. We developed an algorithm named Smart General Variable Neighborhood Search with Adaptive Local Search (SGVNSALS) to solve this problem, and, for comparison purposes, we also implemented a Smart General Variable Neighborhood Search (SGVNS) and a General Variable Neighborhood Search (GVNS) algorithms. The SGVNSALS algorithm alternates the local search engine between two different strategies. In the first strategy, the Randomized Variable Neighborhood Descent method (RVND) performs the local search, and, when applying this strategy, most successful neighborhoods receive a higher score. In the second strategy, the local search method is applied only in a single neighborhood, chosen by a roulette method. Thus, the application of the first local search strategy serves as a learning method for applying the second strategy. To test these algorithms, we use benchmark instances from MDVRPTW involving up to 960 customers, 12 depots, and 120 vehicles. The results show SGVNSALS performance surpassed both SGVNS and GVNS concerning the number of used vehicles and covered distance. As there are no algorithms in the literature dealing with MDVRPTW*, we compared the results from SGVNSALS with those of the best-known solutions concerning these instances for MDVRPTW, where the objective is only to minimize the total distance covered. The results showed that the proposed algorithm reduced the vehicle fleet by 91.18% of the evaluated instances, and the fleet size achieved an average reduction of up to 23.32%. However, there was an average increase of up to 31.48% in total distance traveled in these instances. Finally, the article evaluated the contribution of each neighborhood to the local search and shaking operations of the algorithm, allowing the identification of the neighborhoods that most contribute to a better exploration of the solution space of the problem. • First proposition of the Vehicle Routing Problem with Time Windows and Multi-Depots aiming Vehicle Fleet Reduction (MDVRPTW*). • The development of SGVNSALS, a VNS-based hybrid algorithm to solve MDVRPTW*; • A comparison between the proposed algorithm and the variants SGVNS and GVNS. • A comparison between the results of MDVRPTW* from SGVNSALS and the best-known results from literature for MDVRPTW. • The evaluation of the neighborhood structures used in SGVNSALS when solving MDVRPTW*.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柳如花发布了新的文献求助10
3秒前
3秒前
7秒前
英俊的铭应助柳如花采纳,获得10
8秒前
LSQ完成签到 ,获得积分10
9秒前
冬灵完成签到,获得积分10
11秒前
11秒前
杨除夕完成签到,获得积分10
12秒前
15秒前
lwioi完成签到,获得积分10
16秒前
小蘑菇应助墨水不言语采纳,获得10
17秒前
留胡子的立辉应助ASBL采纳,获得10
20秒前
田様应助1_1采纳,获得10
21秒前
风雨无阻完成签到 ,获得积分10
21秒前
李丹发布了新的文献求助10
21秒前
river_121完成签到,获得积分10
24秒前
叶落花开发布了新的文献求助10
25秒前
8R60d8应助yyy采纳,获得10
25秒前
深情安青应助Frost采纳,获得10
26秒前
27秒前
dmyy313235发布了新的文献求助10
27秒前
戈惜完成签到 ,获得积分10
28秒前
29秒前
归海梦岚完成签到,获得积分0
29秒前
英姑应助yy采纳,获得10
30秒前
31秒前
31秒前
咯噔发布了新的文献求助10
32秒前
34秒前
尾状叶完成签到 ,获得积分10
34秒前
ttkx完成签到,获得积分10
35秒前
wlg发布了新的文献求助10
35秒前
丘比特应助nnnd77采纳,获得10
35秒前
39秒前
利乐完成签到,获得积分10
41秒前
xuelanghu发布了新的文献求助10
42秒前
琪凯定理发布了新的文献求助10
42秒前
FashionBoy应助wlg采纳,获得10
42秒前
英俊的铭应助毛毛雨采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681027
求助须知:如何正确求助?哪些是违规求助? 4056979
关于积分的说明 12544306
捐赠科研通 3751999
什么是DOI,文献DOI怎么找? 2072131
邀请新用户注册赠送积分活动 1101233
科研通“疑难数据库(出版商)”最低求助积分说明 980573