Intelligent tool wear monitoring based on multi-channel hybrid information and deep transfer learning

频道(广播) 过程(计算) 残余物 变量(数学) 计算机科学 人工神经网络 工程类 数据挖掘 人工智能 算法 数学 数学分析 计算机网络 操作系统
作者
Pengfei Zhang,Dong Gao,Dongbo Hong,Yong Lü,Zihao Wang,Zhirong Liao
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:69: 31-47 被引量:28
标识
DOI:10.1016/j.jmsy.2023.06.004
摘要

Effective tool wear monitoring (TWM) is essential for maintaining high quality and efficiency of cutting operations, preventing defective parts, and minimising economic losses. However, current research on TWM is mostly concentrated on specific working conditions, which limits its application. This study proposes a variable-condition TWM method based on multi-channel hybrid information and deep transfer learning. Multi-channel hybrid information is formed by combining multidimensional cutting force data and multidimensional process information. Based on this, a residual network (ResNet) is trained to obtain a TWM model that could predict the tool wear under multiple working conditions. Once variable working conditions arise (e.g., a change of tool or workpiece), the established ResNet model can be fine-tuned using a small amount of multi-channel hybrid information. These models were validated using datasets from a local experiment and NASA. The prediction results of the local dataset show that the model using hybrid information has a maximum tool wear prediction error of 9 µm and 2.7 µm under multiple and variable working conditions, respectively, which is much smaller than the prediction error of the model using only cutting force data. Moreover, fine-tuning the multi-channel hybrid information yields better prediction performance than using only sensor data for the TWM model. These results were demonstrated using the NASA dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
种草匠完成签到,获得积分10
2秒前
2秒前
510发布了新的文献求助10
2秒前
海洋完成签到,获得积分10
7秒前
jack完成签到,获得积分10
7秒前
明理的延恶完成签到 ,获得积分10
10秒前
在水一方应助干净山柳采纳,获得10
11秒前
予颂完成签到,获得积分10
12秒前
青苔完成签到,获得积分10
12秒前
科研通AI5应助从容谷菱采纳,获得10
13秒前
科研通AI2S应助yehata采纳,获得10
14秒前
17秒前
zhiwei发布了新的文献求助10
17秒前
GUANG发布了新的文献求助30
19秒前
冰魂应助123456采纳,获得10
20秒前
21秒前
vion完成签到 ,获得积分10
22秒前
suiminmin完成签到,获得积分20
23秒前
干净山柳发布了新的文献求助10
26秒前
妮妮树莓派完成签到,获得积分10
29秒前
30秒前
疯狂的金毛完成签到 ,获得积分10
30秒前
Rozier完成签到,获得积分10
32秒前
33秒前
隐形曼青应助SSS采纳,获得10
34秒前
lizhiqian2024发布了新的文献求助10
35秒前
36秒前
黑衣人的秘密完成签到,获得积分10
37秒前
yh-nie发布了新的文献求助20
38秒前
40秒前
41秒前
南风发布了新的文献求助10
45秒前
nini可可味儿完成签到,获得积分10
46秒前
英勇菲鹰发布了新的文献求助10
46秒前
47秒前
SSS发布了新的文献求助10
47秒前
47秒前
48秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802475
求助须知:如何正确求助?哪些是违规求助? 3348107
关于积分的说明 10336540
捐赠科研通 3064030
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997