CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling

联营 计算机科学 人工智能 变压器 对偶(语法数字) 图形 理论计算机科学 工程类 语言学 电气工程 电压 哲学
作者
Chaosheng Tang,Mingyang Wei,Junding Sun,Shuihua Wang‎,Yudong Zhang
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (7): 101618-101618 被引量:27
标识
DOI:10.1016/j.jksuci.2023.101618
摘要

Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is overlooking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助光锥之外采纳,获得10
刚刚
李健的粉丝团团长应助hbc采纳,获得10
1秒前
1秒前
Akim应助MZ采纳,获得10
1秒前
果冻完成签到,获得积分10
1秒前
1秒前
2秒前
4秒前
4秒前
半糖神仙完成签到 ,获得积分20
5秒前
5秒前
淡淡碧玉完成签到,获得积分10
6秒前
uuu完成签到,获得积分10
6秒前
Keira_Chang完成签到,获得积分10
7秒前
23完成签到,获得积分20
7秒前
SciGPT应助奥丁蒂法采纳,获得10
8秒前
9秒前
coco完成签到 ,获得积分10
9秒前
Ava应助养恩采纳,获得10
10秒前
胡天渝完成签到,获得积分10
11秒前
datiancaihaha关注了科研通微信公众号
11秒前
12秒前
脑洞疼应助糊涂的凡采纳,获得10
12秒前
Duolalala发布了新的文献求助30
12秒前
小马甲应助超级的珍珍采纳,获得10
12秒前
BLDYT完成签到,获得积分10
13秒前
JF123_完成签到 ,获得积分10
15秒前
科目三应助杨立胜采纳,获得10
15秒前
魔幻的秋烟完成签到,获得积分20
15秒前
柳柳发布了新的文献求助10
15秒前
科研通AI6应助funnyelephant采纳,获得10
15秒前
zz发布了新的文献求助10
16秒前
17秒前
hyl-tcm完成签到 ,获得积分10
18秒前
可爱的函函应助晓晓采纳,获得10
18秒前
HHHHHJ完成签到,获得积分10
18秒前
19秒前
19秒前
kkk完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853939
求助须知:如何正确求助?哪些是违规求助? 4151576
关于积分的说明 12862783
捐赠科研通 3900707
什么是DOI,文献DOI怎么找? 2143423
邀请新用户注册赠送积分活动 1163078
关于科研通互助平台的介绍 1063614