量子纠缠
多方
统计物理学
关系(数据库)
多体纠缠
国家(计算机科学)
量子力学
熵不确定性
物理
W州
理论物理学
压扁的纠缠
数学
不确定性原理
计算机科学
算法
数据挖掘
量子
作者
Li-Hang Ren,Yun‐Hao Shi,Jinjun Chen,Heng Fan
出处
期刊:Physical review
[American Physical Society]
日期:2023-05-30
卷期号:107 (5)
被引量:6
标识
DOI:10.1103/physreva.107.052617
摘要
We present the generalized state-dependent entropic uncertainty relations in a multiple measurements setting and the optimal lower bound is obtained by considering different measurement sequences. We then apply this uncertainty relation to witness entanglement and give the experimentally accessible lower bounds on both bipartite and tripartite entanglements. This method of detecting entanglement is applied to a physical system of two particles on a one-dimensional lattice and Greenberger-Horne-Zeilinger (GHZ)-Werner state. It is shown that, for measurements that are not in mutually unbiased bases, this generalized entropic uncertainty relation is superior to the previous state-independent one in entanglement detection. Furthermore, we conduct a demonstration of multipartite entanglement detection of GHZ states up to ten qubits on the Quafu cloud quantum computation platform. Our results might play important roles in detecting multipartite entanglement experimentally.
科研通智能强力驱动
Strongly Powered by AbleSci AI