A Novel Method to Predict Sales Price of Domestic Vehicles using News Sentiment Analysis with Random Forest Algorithm

朴素贝叶斯分类器 随机森林 计算机科学 机器学习 人工智能 支持向量机 决策树 贝叶斯分类器 Bayes错误率 统计分类 分类器(UML) 数据挖掘
作者
KrishnaS Kumar,Muthupandian Saravanan,R Surendran
标识
DOI:10.1109/icaaic56838.2023.10141389
摘要

A highly scalable computer environment nowadays makes it possible to perform a variety of tasks involving data-intensive machine learning and natural language processing. One of these is the sales price prediction of home autos with recent concerns that many data scientists have looked at. In this research, the in-memory computing platform Apache Spark-which implements Naive Bayes, Novel Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression are some of the classifiers that the authors examine. This study compares the classification accuracy of several classifiers based on the size of training data sets and the number of n-grams. Tests analyzed quick Amazonl product reviews. Techniques and resources: With 102 samples, the Random Forest Classifier was used on a dataset of 2943 stock sentiment scores. New Random Forest classifiers have been presented and developed as an alternative to Naive Bayes classifiers as a framework for stock market prediction. The classifiers' accuracy was assessed and noted. The Findings and Discussion: The Naive Bayes classifier produces 87% in predicting the future stock share prices on the data set used, whereas the Random forest classifier predicts the same at the rate of 92%. The Random Forest and the Naive Bayes have statistically significant differences from one other (p<0.003). The classification accuracy of the suggested model may be analyzed from the computational analysis results, and it appears that Novel Random Forest is more accurate than Naive Bayes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
WHL完成签到,获得积分20
2秒前
袋鼠嫲嫲发布了新的文献求助10
3秒前
活泼小霜发布了新的文献求助10
3秒前
专注寻菱发布了新的文献求助10
5秒前
WHL发布了新的文献求助10
5秒前
愚者发布了新的文献求助30
6秒前
陈哥发布了新的文献求助10
7秒前
西红柿发布了新的文献求助10
7秒前
活泼小霜完成签到,获得积分10
7秒前
7秒前
liudabao完成签到,获得积分10
8秒前
8秒前
孤独元容发布了新的文献求助10
8秒前
科研通AI6应助俊逸的代曼采纳,获得10
9秒前
9秒前
要减肥的翠安应助myq采纳,获得20
10秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Bubbles完成签到,获得积分10
13秒前
南风发布了新的文献求助10
13秒前
熹微完成签到,获得积分10
13秒前
在水一方应助陈哥采纳,获得10
14秒前
高贵发布了新的文献求助10
15秒前
15秒前
天天快乐应助梨里采纳,获得10
16秒前
khalil发布了新的文献求助30
16秒前
liudabao发布了新的文献求助30
16秒前
17秒前
CAOHOU应助弱于一般人类采纳,获得10
18秒前
18秒前
SciGPT应助妄自采纳,获得10
19秒前
朱灭龙完成签到,获得积分10
19秒前
阳光发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285223
求助须知:如何正确求助?哪些是违规求助? 3812672
关于积分的说明 11942875
捐赠科研通 3459006
什么是DOI,文献DOI怎么找? 1897156
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849410