A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM

声纳 计算机科学 人工智能 计算机视觉 水下 分割 编解码器 图像分割 模式识别(心理学) 电信 地理 考古
作者
Jiaxu Li,Guangyao Han,Shuai Chang,Xiaomei Fu
出处
期刊:Defence Technology [Elsevier BV]
卷期号:33: 339-351 被引量:3
标识
DOI:10.1016/j.dt.2023.05.012
摘要

With the development of underwater sonar detection technology, simultaneous localization and mapping (SLAM) approach has attracted much attention in underwater navigation field in recent years. But the weak detection ability of a single vehicle limits the SLAM performance in wide areas. Thereby, cooperative SLAM using multiple vehicles has become an important research direction. The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles. However, the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data. It is essential to compress the images before transmission. Recently, deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks, but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information. In this paper, we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression (SSIC) framework and the joint source-channel codec, to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver. The SSIC framework consists of Auto-Encoder structure-based sonar image compression network, which is measured by a semantic segmentation network's residual. Considering that sonar images have the characteristics of blurred target edges, the semantic segmentation network used a special dilated convolution neural network (DiCNN) to enhance segmentation accuracy by expanding the range of receptive fields. The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data, which deal with sonar image transmission error caused by the serious underwater acoustic channel. Experiment results demonstrate that our method preserves more semantic information, with advantages over existing methods at the same compression ratio. It also improves the error tolerance and packet loss resistance of transmission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳母鸡完成签到 ,获得积分10
1秒前
du完成签到,获得积分10
1秒前
2秒前
懵懂的毛豆应助咿咿呀呀采纳,获得20
2秒前
阮逸君发布了新的文献求助10
4秒前
账户已注销完成签到,获得积分0
4秒前
qixingbao07126完成签到,获得积分10
4秒前
5秒前
火星上凌青完成签到,获得积分10
5秒前
bao完成签到,获得积分10
5秒前
6秒前
Ddddddd完成签到,获得积分10
6秒前
CAOHOU应助Queena采纳,获得10
6秒前
奋斗的大米完成签到,获得积分10
6秒前
CAOHOU应助Queena采纳,获得10
6秒前
6秒前
lcj完成签到,获得积分10
7秒前
爆米花应助蒹葭苍苍采纳,获得10
7秒前
SYLH应助xzy998采纳,获得20
7秒前
7秒前
搜集达人应助CLF采纳,获得10
7秒前
小蛮样完成签到,获得积分10
7秒前
7秒前
穆思柔完成签到,获得积分10
7秒前
8秒前
Miranda完成签到,获得积分10
8秒前
sunyz完成签到,获得积分0
8秒前
Maxpan发布了新的文献求助10
9秒前
ccc完成签到,获得积分10
9秒前
亗sui完成签到,获得积分10
9秒前
苹果洋葱完成签到,获得积分10
9秒前
9秒前
33完成签到,获得积分10
9秒前
常涑完成签到,获得积分10
10秒前
彭于晏应助A0采纳,获得10
10秒前
10秒前
梦追阳完成签到 ,获得积分10
10秒前
坐等时光看轻自己完成签到,获得积分10
10秒前
zjm完成签到,获得积分10
11秒前
咿咿呀呀完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044