Abstract The dynamic spreading of liquids on solid surfaces is essential across numerous daily and industrial processes. Surfaces that enable liquid superspreading, characterized by rapid or extensive spreading, are particularly valuable due to their implications in functional film fabrication, heat management, liquid/liquid separation, and more. Recently, significant research is conducted on liquid superspreading surfaces, with microstructure‐regulated surfaces gaining increasing attention. However, the deeper correlations between microstructural physical factors and the superspreading behaviors, along with the relevant applications, remain inadequately understood. This review aims to consolidate the existing knowledge from published results and stimulate further investigation by detailing structures, functionalities, and principles for constructing liquid superspreading surfaces. Examining is began by the energy balance between input and dissipation that underpins droplet spreading dynamics. Then current designs are reviewed for superspreading surfaces, with a focus on chemical and physical aspects, giving greater emphasis to the physical perspective. Additionally, several typical applications are categorized based on liquid superspreading behaviors across various fields. Finally, the prevailing challenges are highlighted and provide insights into future research directions.