MRI-based habitat radiomics combined with vision transformer for identifying vulnerable intracranial atherosclerotic plaques and predicting stroke events: a multicenter, retrospective study

医学 无线电技术 冲程(发动机) 回顾性队列研究 磁共振成像 放射科 内科学 机械工程 工程类
作者
Yu Gao,Ziang Li,Xiaoyang Zhai,Gang Zhang,Lan Zhang,Tingting Huang,Han Lin,Jie Wang,Ruifang Yan,Yongdong Li,Hongling Zhao,Qiang Zhao,Zhengqi Wei,Beichen Xie,Yue Sun,Jianhua Zhao,Hongkai Cui
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:82: 103186-103186 被引量:2
标识
DOI:10.1016/j.eclinm.2025.103186
摘要

Accurate identification of high-risk vulnerable plaques and assessment of stroke risk are crucial for clinical decision-making, yet reliable non-invasive predictive tools are currently lacking. This study aimed to develop an artificial intelligence model based on high-resolution vessel wall imaging (HR-VWI) to assist in the identification of vulnerable plaques and prediction of stroke recurrence risk in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). Between June 2018 and June 2024, a retrospective collection of HR-VWI images from 1806 plaques in 726 sICAS patients across four medical institutions was conducted. K-means clustering was applied to the T1-weighted imaging (T1WI) and T1-weighted imaging with contrast enhancement (T1CE) sequences. Following feature extraction and selection, radiomic models and habitat models were constructed. Additionally, the Vision Transformer (ViT) architecture was utilized for HR-VWI image analysis to build a deep learning model. A stacking fusion strategy was employed to integrate the habitat model and ViT model, enabling effective identification of high-risk vulnerable plaques in the intracranial region and prediction of stroke recurrence risk. Model performance was evaluated using receiver operating characteristic (ROC) curves, and model comparisons were conducted using the DeLong test. Furthermore, decision curve analysis and calibration curves were utilized to assess the practicality and clinical value of the model. The fused Habitat + ViT model exhibited excellent performance in both the validation and test sets. In the validation set, the model achieved an area under the curve (AUC) of 0.949 (95% CI: 0.927-0.969), with a sensitivity of 0.879 (95% CI: 0.840-0.945), a specificity of 0.905 (95% CI: 0.842-0.949), and an accuracy of 0.897 (95% CI: 0.870-0.926). In the test set, the AUC increased to 0.960 (95% CI: 0.941-0.973), with specificity rising to 0.963 and an accuracy of 0.885 (95% CI: 0.857-0.913). The DeLong test revealed statistically significant differences in AUC between the fused model and the single-modal models (test set, vs. ViT p = 0.000; vs. Habitat p = 0.000) Cox regression analysis showed that the Habitat + ViT index, based on the prediction probability of the Habitat + ViT model, was an independent predictor of stroke recurrence (HR: 2.07; 95% CI: 1.12-3.81), with significant predictive power for stroke events at multiple time points. Specifically, measured by AUC values, the model's predictive performance at 1, 2, 3, and 4 years was 0.751 (95% CI: 0.679-0.823), 0.820 (95% CI: 0.760-0.876), 0.815 (95% CI: 0.753-0.877), and 0.780 (95% CI: 0.680-0.873), respectively. The integrated Habitat + ViT model based on HR-VWI demonstrated superior performance in identifying high-risk vulnerable plaques in sICAS patients and predicting stroke recurrence risk, providing valuable support for clinical decision-making. This study was supported by the National Natural Science Foundation of China (grant 82204933). Henan Key Laboratory of Neurorestoratology (HNSJXF-2021-004), 2019 Joint Construction Project of Henan Provincial Health Committee and Ministry of Health (SB201901061), and the Xin Xiang City Acute Ischemic Stroke Precision Prevention and Treatment Key Laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
18秒前
小文殊完成签到 ,获得积分10
22秒前
Ray完成签到 ,获得积分10
22秒前
P_Chem完成签到,获得积分10
24秒前
zj完成签到 ,获得积分10
35秒前
周冯雪完成签到 ,获得积分10
41秒前
46秒前
浮游应助科研通管家采纳,获得10
46秒前
46秒前
浮游应助科研通管家采纳,获得10
46秒前
大雪完成签到 ,获得积分10
47秒前
gln完成签到 ,获得积分10
1分钟前
李健的小迷弟应助momo采纳,获得10
1分钟前
外向可冥完成签到,获得积分10
1分钟前
1分钟前
繁星完成签到 ,获得积分10
1分钟前
文艺水风完成签到 ,获得积分10
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分0
1分钟前
cwanglh完成签到 ,获得积分10
1分钟前
范ER完成签到 ,获得积分10
1分钟前
athena完成签到 ,获得积分10
2分钟前
麦田麦兜完成签到,获得积分10
2分钟前
tbdxby完成签到 ,获得积分0
2分钟前
海阔天空完成签到 ,获得积分10
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
qzh006完成签到,获得积分10
2分钟前
灵巧的以亦完成签到 ,获得积分10
2分钟前
kanong完成签到,获得积分0
2分钟前
高贵的问萍完成签到,获得积分10
2分钟前
hml123完成签到,获得积分10
2分钟前
su完成签到 ,获得积分0
2分钟前
Kelsey完成签到 ,获得积分10
2分钟前
鹏虫虫发布了新的文献求助10
2分钟前
carl完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
166完成签到 ,获得积分10
2分钟前
仙女完成签到 ,获得积分10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595774
关于积分的说明 14449708
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550