MRI-based habitat radiomics combined with vision transformer for identifying vulnerable intracranial atherosclerotic plaques and predicting stroke events: a multicenter, retrospective study

医学 无线电技术 冲程(发动机) 回顾性队列研究 磁共振成像 放射科 内科学 机械工程 工程类
作者
Yu Gao,Zi-ang Li,Xiaoyang Zhai,Gang Zhang,Lan Zhang,Tingting Huang,Han Lin,Jie Wang,Ruifang Yan,Yongdong Li,Hongling Zhao,Qiang Zhao,Zhengqi Wei,Beichen Xie,Yue Sun,Jianhua Zhao,Hongkai Cui
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:82: 103186-103186
标识
DOI:10.1016/j.eclinm.2025.103186
摘要

Accurate identification of high-risk vulnerable plaques and assessment of stroke risk are crucial for clinical decision-making, yet reliable non-invasive predictive tools are currently lacking. This study aimed to develop an artificial intelligence model based on high-resolution vessel wall imaging (HR-VWI) to assist in the identification of vulnerable plaques and prediction of stroke recurrence risk in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). Between June 2018 and June 2024, a retrospective collection of HR-VWI images from 1806 plaques in 726 sICAS patients across four medical institutions was conducted. K-means clustering was applied to the T1-weighted imaging (T1WI) and T1-weighted imaging with contrast enhancement (T1CE) sequences. Following feature extraction and selection, radiomic models and habitat models were constructed. Additionally, the Vision Transformer (ViT) architecture was utilized for HR-VWI image analysis to build a deep learning model. A stacking fusion strategy was employed to integrate the habitat model and ViT model, enabling effective identification of high-risk vulnerable plaques in the intracranial region and prediction of stroke recurrence risk. Model performance was evaluated using receiver operating characteristic (ROC) curves, and model comparisons were conducted using the DeLong test. Furthermore, decision curve analysis and calibration curves were utilized to assess the practicality and clinical value of the model. The fused Habitat + ViT model exhibited excellent performance in both the validation and test sets. In the validation set, the model achieved an area under the curve (AUC) of 0.949 (95% CI: 0.927-0.969), with a sensitivity of 0.879 (95% CI: 0.840-0.945), a specificity of 0.905 (95% CI: 0.842-0.949), and an accuracy of 0.897 (95% CI: 0.870-0.926). In the test set, the AUC increased to 0.960 (95% CI: 0.941-0.973), with specificity rising to 0.963 and an accuracy of 0.885 (95% CI: 0.857-0.913). The DeLong test revealed statistically significant differences in AUC between the fused model and the single-modal models (test set, vs. ViT p = 0.000; vs. Habitat p = 0.000) Cox regression analysis showed that the Habitat + ViT index, based on the prediction probability of the Habitat + ViT model, was an independent predictor of stroke recurrence (HR: 2.07; 95% CI: 1.12-3.81), with significant predictive power for stroke events at multiple time points. Specifically, measured by AUC values, the model's predictive performance at 1, 2, 3, and 4 years was 0.751 (95% CI: 0.679-0.823), 0.820 (95% CI: 0.760-0.876), 0.815 (95% CI: 0.753-0.877), and 0.780 (95% CI: 0.680-0.873), respectively. The integrated Habitat + ViT model based on HR-VWI demonstrated superior performance in identifying high-risk vulnerable plaques in sICAS patients and predicting stroke recurrence risk, providing valuable support for clinical decision-making. This study was supported by the National Natural Science Foundation of China (grant 82204933). Henan Key Laboratory of Neurorestoratology (HNSJXF-2021-004), 2019 Joint Construction Project of Henan Provincial Health Committee and Ministry of Health (SB201901061), and the Xin Xiang City Acute Ischemic Stroke Precision Prevention and Treatment Key Laboratory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Ivy采纳,获得10
1秒前
zhang完成签到,获得积分10
2秒前
lewu完成签到,获得积分20
4秒前
zorn完成签到,获得积分10
5秒前
咪路完成签到,获得积分10
5秒前
流星完成签到,获得积分10
8秒前
无语的诗柳完成签到 ,获得积分10
8秒前
zorn发布了新的文献求助20
9秒前
yanglin完成签到,获得积分10
10秒前
蔺一江发布了新的文献求助10
13秒前
13秒前
YZ完成签到,获得积分10
18秒前
学呀学完成签到 ,获得积分10
19秒前
未知数发布了新的文献求助10
19秒前
亚尔完成签到 ,获得积分10
21秒前
烟花应助YZ采纳,获得10
22秒前
wanci应助十五采纳,获得10
23秒前
25秒前
Yo鹿发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
28秒前
虚心的百川完成签到,获得积分10
29秒前
zhou发布了新的文献求助10
30秒前
852应助诚心人生采纳,获得10
31秒前
大气的尔蓝完成签到,获得积分10
32秒前
Ivy发布了新的文献求助10
32秒前
chen发布了新的文献求助10
33秒前
林耀辉发布了新的文献求助10
33秒前
给我好好读书完成签到,获得积分10
34秒前
眠眠清完成签到 ,获得积分10
37秒前
花开富贵完成签到,获得积分10
37秒前
39秒前
wsh完成签到,获得积分10
40秒前
43秒前
zhou完成签到,获得积分10
44秒前
无限鲜花发布了新的文献求助10
44秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327165
关于积分的说明 10229815
捐赠科研通 3042014
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799278
科研通“疑难数据库(出版商)”最低求助积分说明 758757