MRI-based habitat radiomics combined with vision transformer for identifying vulnerable intracranial atherosclerotic plaques and predicting stroke events: a multicenter, retrospective study

医学 无线电技术 冲程(发动机) 回顾性队列研究 磁共振成像 放射科 内科学 机械工程 工程类
作者
Yu Gao,Zi-ang Li,Xiaoyang Zhai,Gang Zhang,Lan Zhang,Tingting Huang,Han Lin,Jie Wang,Ruifang Yan,Yongdong Li,Hongling Zhao,Qiang Zhao,Zhengqi Wei,Beichen Xie,Yue Sun,Jianhua Zhao,Hongkai Cui
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:82: 103186-103186
标识
DOI:10.1016/j.eclinm.2025.103186
摘要

Accurate identification of high-risk vulnerable plaques and assessment of stroke risk are crucial for clinical decision-making, yet reliable non-invasive predictive tools are currently lacking. This study aimed to develop an artificial intelligence model based on high-resolution vessel wall imaging (HR-VWI) to assist in the identification of vulnerable plaques and prediction of stroke recurrence risk in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). Between June 2018 and June 2024, a retrospective collection of HR-VWI images from 1806 plaques in 726 sICAS patients across four medical institutions was conducted. K-means clustering was applied to the T1-weighted imaging (T1WI) and T1-weighted imaging with contrast enhancement (T1CE) sequences. Following feature extraction and selection, radiomic models and habitat models were constructed. Additionally, the Vision Transformer (ViT) architecture was utilized for HR-VWI image analysis to build a deep learning model. A stacking fusion strategy was employed to integrate the habitat model and ViT model, enabling effective identification of high-risk vulnerable plaques in the intracranial region and prediction of stroke recurrence risk. Model performance was evaluated using receiver operating characteristic (ROC) curves, and model comparisons were conducted using the DeLong test. Furthermore, decision curve analysis and calibration curves were utilized to assess the practicality and clinical value of the model. The fused Habitat + ViT model exhibited excellent performance in both the validation and test sets. In the validation set, the model achieved an area under the curve (AUC) of 0.949 (95% CI: 0.927-0.969), with a sensitivity of 0.879 (95% CI: 0.840-0.945), a specificity of 0.905 (95% CI: 0.842-0.949), and an accuracy of 0.897 (95% CI: 0.870-0.926). In the test set, the AUC increased to 0.960 (95% CI: 0.941-0.973), with specificity rising to 0.963 and an accuracy of 0.885 (95% CI: 0.857-0.913). The DeLong test revealed statistically significant differences in AUC between the fused model and the single-modal models (test set, vs. ViT p = 0.000; vs. Habitat p = 0.000) Cox regression analysis showed that the Habitat + ViT index, based on the prediction probability of the Habitat + ViT model, was an independent predictor of stroke recurrence (HR: 2.07; 95% CI: 1.12-3.81), with significant predictive power for stroke events at multiple time points. Specifically, measured by AUC values, the model's predictive performance at 1, 2, 3, and 4 years was 0.751 (95% CI: 0.679-0.823), 0.820 (95% CI: 0.760-0.876), 0.815 (95% CI: 0.753-0.877), and 0.780 (95% CI: 0.680-0.873), respectively. The integrated Habitat + ViT model based on HR-VWI demonstrated superior performance in identifying high-risk vulnerable plaques in sICAS patients and predicting stroke recurrence risk, providing valuable support for clinical decision-making. This study was supported by the National Natural Science Foundation of China (grant 82204933). Henan Key Laboratory of Neurorestoratology (HNSJXF-2021-004), 2019 Joint Construction Project of Henan Provincial Health Committee and Ministry of Health (SB201901061), and the Xin Xiang City Acute Ischemic Stroke Precision Prevention and Treatment Key Laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling完成签到,获得积分10
2秒前
4秒前
4秒前
eric888应助yaoyin111采纳,获得250
5秒前
tt完成签到 ,获得积分10
5秒前
11111发布了新的文献求助10
5秒前
MOndayMU发布了新的文献求助10
7秒前
cai完成签到 ,获得积分10
7秒前
小巧的寻双完成签到,获得积分10
7秒前
YamDaamCaa举报bingchem求助涉嫌违规
8秒前
topsun发布了新的文献求助10
8秒前
高山流水完成签到,获得积分10
8秒前
10秒前
玺月洛离完成签到,获得积分10
11秒前
潇湘夜雨完成签到,获得积分10
13秒前
冬冬完成签到,获得积分10
14秒前
秋半梦发布了新的文献求助10
15秒前
Sofia完成签到 ,获得积分10
15秒前
斯文的难破完成签到 ,获得积分10
15秒前
郝煜祺完成签到,获得积分10
16秒前
不想长大完成签到 ,获得积分10
17秒前
11111完成签到,获得积分10
17秒前
Hehehehe完成签到 ,获得积分10
17秒前
18秒前
独摇之完成签到,获得积分10
18秒前
1793480753完成签到 ,获得积分10
19秒前
DDT完成签到,获得积分10
20秒前
微雨若,,完成签到 ,获得积分10
21秒前
七子完成签到 ,获得积分10
21秒前
淡然冬灵发布了新的文献求助10
21秒前
Yolo完成签到,获得积分10
22秒前
温暖大米完成签到 ,获得积分10
23秒前
等风来完成签到 ,获得积分10
24秒前
25秒前
26秒前
27秒前
沙里飞完成签到 ,获得积分10
27秒前
MIST完成签到,获得积分10
27秒前
开心的太清完成签到,获得积分10
27秒前
淡然冬灵完成签到,获得积分10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075196
求助须知:如何正确求助?哪些是违规求助? 3613902
关于积分的说明 11470304
捐赠科研通 3332162
什么是DOI,文献DOI怎么找? 1831611
邀请新用户注册赠送积分活动 901549
科研通“疑难数据库(出版商)”最低求助积分说明 820344