MRI-based habitat radiomics combined with vision transformer for identifying vulnerable intracranial atherosclerotic plaques and predicting stroke events: a multicenter, retrospective study

医学 无线电技术 冲程(发动机) 回顾性队列研究 磁共振成像 放射科 内科学 机械工程 工程类
作者
Yu Gao,Ziang Li,Xiaoyang Zhai,Gang Zhang,Lan Zhang,Tingting Huang,Han Lin,Jie Wang,Ruifang Yan,Yongdong Li,Hongling Zhao,Qiang Zhao,Zhengqi Wei,Beichen Xie,Yue Sun,Jianhua Zhao,Hongkai Cui
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:82: 103186-103186 被引量:2
标识
DOI:10.1016/j.eclinm.2025.103186
摘要

Accurate identification of high-risk vulnerable plaques and assessment of stroke risk are crucial for clinical decision-making, yet reliable non-invasive predictive tools are currently lacking. This study aimed to develop an artificial intelligence model based on high-resolution vessel wall imaging (HR-VWI) to assist in the identification of vulnerable plaques and prediction of stroke recurrence risk in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). Between June 2018 and June 2024, a retrospective collection of HR-VWI images from 1806 plaques in 726 sICAS patients across four medical institutions was conducted. K-means clustering was applied to the T1-weighted imaging (T1WI) and T1-weighted imaging with contrast enhancement (T1CE) sequences. Following feature extraction and selection, radiomic models and habitat models were constructed. Additionally, the Vision Transformer (ViT) architecture was utilized for HR-VWI image analysis to build a deep learning model. A stacking fusion strategy was employed to integrate the habitat model and ViT model, enabling effective identification of high-risk vulnerable plaques in the intracranial region and prediction of stroke recurrence risk. Model performance was evaluated using receiver operating characteristic (ROC) curves, and model comparisons were conducted using the DeLong test. Furthermore, decision curve analysis and calibration curves were utilized to assess the practicality and clinical value of the model. The fused Habitat + ViT model exhibited excellent performance in both the validation and test sets. In the validation set, the model achieved an area under the curve (AUC) of 0.949 (95% CI: 0.927-0.969), with a sensitivity of 0.879 (95% CI: 0.840-0.945), a specificity of 0.905 (95% CI: 0.842-0.949), and an accuracy of 0.897 (95% CI: 0.870-0.926). In the test set, the AUC increased to 0.960 (95% CI: 0.941-0.973), with specificity rising to 0.963 and an accuracy of 0.885 (95% CI: 0.857-0.913). The DeLong test revealed statistically significant differences in AUC between the fused model and the single-modal models (test set, vs. ViT p = 0.000; vs. Habitat p = 0.000) Cox regression analysis showed that the Habitat + ViT index, based on the prediction probability of the Habitat + ViT model, was an independent predictor of stroke recurrence (HR: 2.07; 95% CI: 1.12-3.81), with significant predictive power for stroke events at multiple time points. Specifically, measured by AUC values, the model's predictive performance at 1, 2, 3, and 4 years was 0.751 (95% CI: 0.679-0.823), 0.820 (95% CI: 0.760-0.876), 0.815 (95% CI: 0.753-0.877), and 0.780 (95% CI: 0.680-0.873), respectively. The integrated Habitat + ViT model based on HR-VWI demonstrated superior performance in identifying high-risk vulnerable plaques in sICAS patients and predicting stroke recurrence risk, providing valuable support for clinical decision-making. This study was supported by the National Natural Science Foundation of China (grant 82204933). Henan Key Laboratory of Neurorestoratology (HNSJXF-2021-004), 2019 Joint Construction Project of Henan Provincial Health Committee and Ministry of Health (SB201901061), and the Xin Xiang City Acute Ischemic Stroke Precision Prevention and Treatment Key Laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Jjj采纳,获得10
刚刚
1秒前
LIUJIE完成签到,获得积分10
1秒前
酷炫星星发布了新的文献求助10
1秒前
震动的化蛹完成签到,获得积分10
2秒前
科研通AI6应助小温w采纳,获得10
3秒前
萧西发布了新的文献求助10
4秒前
胡胡发布了新的文献求助10
4秒前
6秒前
一年5篇发布了新的文献求助10
7秒前
洋芋发布了新的文献求助10
9秒前
奋斗忆灵完成签到,获得积分10
9秒前
10秒前
10秒前
李健应助zzzy采纳,获得10
10秒前
12秒前
无限的含羞草完成签到,获得积分10
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
豆花发布了新的文献求助10
16秒前
辛夷发布了新的文献求助10
17秒前
18秒前
19秒前
Jjj完成签到,获得积分10
20秒前
木木发布了新的文献求助20
21秒前
一年5篇完成签到,获得积分20
22秒前
zhang发布了新的文献求助10
24秒前
浮游应助酷炫星星采纳,获得10
24秒前
25秒前
Koalas应助萧西采纳,获得10
27秒前
czy发布了新的文献求助10
29秒前
duanzou完成签到,获得积分10
31秒前
充电宝应助天真书竹采纳,获得10
33秒前
小凯完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
科研通AI6应助迷路的健柏采纳,获得10
34秒前
打打应助江峰采纳,获得10
34秒前
wanci应助文艺代灵采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049873
求助须知:如何正确求助?哪些是违规求助? 4277679
关于积分的说明 13334372
捐赠科研通 4092479
什么是DOI,文献DOI怎么找? 2239723
邀请新用户注册赠送积分活动 1246498
关于科研通互助平台的介绍 1175214