Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 接收机工作特性 乳房磁振造影 再现性 磁共振成像 队列 特征选择 分类器(UML) 交叉验证 放射科 人工智能 模式识别(心理学) 癌症 乳腺摄影术 病理 计算机科学 内科学 统计 数学
作者
Ming Fan,Guo-lin Wu,Cheng Hu,Juan Zhang,Guoliang Shao,Lihua Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:94: 140-147 被引量:123
标识
DOI:10.1016/j.ejrad.2017.06.019
摘要

To enhance the accurate prediction of the response to neoadjuvant chemotherapy (NAC) in breast cancer patients by using a quantitative analysis of dynamic enhancement magnetic resonance imaging (DCE-MRI).A dataset of 57 cancer patients with breast DCE-MR images acquired before NAC was used. Among them, 47 patients were Responders, and 10 patients were non-Responders based on the RECIST criteria. The breast regions were segmented on the MR images, and a total of 158 radiomic features were computed to represent the morphologic, dynamic, and the texture of the tumors as well as the background parenchymal features. The optimal subset of features was selected using evolutionary based Wrapper Subset Evaluator. The classifier was trained and tested using a leave-one-out cross-validation (LOOCV) method to classify Responder and non-Responder cases. The area under a receiver operating characteristic curve (AUC) was computed to assess the classifier performance. An additional independent dataset with 46 patients was also included to validate the results.The evolutionary algorithm (EA)-based method identified optimal subsets comprising 12 image features that were fit for classification for the main cohort. Following the same feature selection procedure, the independent validation dataset produced 11 image features, 7 of which were identical to those from the main cohort. The classifier based on the features yield a LOOCV AUC of 0.910 and 0.874 for the main and the reproducibility study cohort, respectively. If the optimal features in the main cohort were utilized to test performance on the reproducibility cohort, the classifier generated an AUC of 0.713. While the features developed in the reproducibility cohort were applied to test the main cohort, the classifier achieved an AUC of 0.683. The AUC of the averaged receiver operating characteristic (ROC) curve for the two data cohort was 0.703.This study demonstrated that quantitative analyses of radiomic features from pretreatment breast DCE-MRI data could be used as valuable image markers that are associated with tumor response to NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沉默的灵寒完成签到,获得积分10
刚刚
lieditongxu发布了新的文献求助10
刚刚
刚刚
陆仓颉完成签到,获得积分10
刚刚
Thy发布了新的文献求助10
1秒前
苑世朝发布了新的文献求助10
1秒前
1秒前
1秒前
香蕉觅云应助irenere1016采纳,获得10
2秒前
2秒前
2秒前
Akim应助waerteyang采纳,获得10
2秒前
chen完成签到,获得积分10
2秒前
3秒前
大雪纷纷关注了科研通微信公众号
3秒前
zhui发布了新的文献求助10
3秒前
HJZ关闭了HJZ文献求助
4秒前
4秒前
4秒前
科研通AI5应助从容襄采纳,获得10
4秒前
小羊的科研日记完成签到,获得积分10
5秒前
田様应助pp采纳,获得10
5秒前
聪慧航空完成签到,获得积分10
6秒前
6秒前
mm发布了新的文献求助10
6秒前
long完成签到 ,获得积分10
6秒前
忧虑的代容完成签到,获得积分10
6秒前
6秒前
1123发布了新的文献求助10
6秒前
7秒前
7秒前
易达发布了新的文献求助30
8秒前
大葱发布了新的文献求助10
8秒前
13333完成签到,获得积分10
8秒前
lieditongxu完成签到,获得积分10
9秒前
活力惜寒完成签到,获得积分10
10秒前
10秒前
dizi完成签到 ,获得积分10
11秒前
苑世朝完成签到,获得积分20
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238692
求助须知:如何正确求助?哪些是违规求助? 3772469
关于积分的说明 11847418
捐赠科研通 3428504
什么是DOI,文献DOI怎么找? 1881482
邀请新用户注册赠送积分活动 933750
科研通“疑难数据库(出版商)”最低求助积分说明 840574