Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments

贝叶斯定理 数学 统计 估计员 贝叶斯因子 计算机科学 贝叶斯概率
作者
Gordon K. Smyth
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:3 (1): 1-25 被引量:11662
标识
DOI:10.2202/1544-6115.1027
摘要

The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated two-color experiment using a simple hierarchical parametric model. The purpose of this paper is to develop the hierarchical model of Lonnstedt and Speed (2002) into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples. The model is reset in the context of general linear models with arbitrary coefficients and contrasts of interest. The approach applies equally well to both single channel and two color microarray experiments. Consistent, closed form estimators are derived for the hyperparameters in the model. The estimators proposed have robust behavior even for small numbers of arrays and allow for incomplete data arising from spot filtering or spot quality weights. The posterior odds statistic is reformulated in terms of a moderated t-statistic in which posterior residual standard deviations are used in place of ordinary standard deviations. The empirical Bayes approach is equivalent to shrinkage of the estimated sample variances towards a pooled estimate, resulting in far more stable inference when the number of arrays is small. The use of moderated t-statistics has the advantage over the posterior odds that the number of hyperparameters which need to estimated is reduced; in particular, knowledge of the non-null prior for the fold changes are not required. The moderated t-statistic is shown to follow a t-distribution with augmented degrees of freedom. The moderated t inferential approach extends to accommodate tests of composite null hypotheses through the use of moderated F-statistics. The performance of the methods is demonstrated in a simulation study. Results are presented for two publicly available data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
3秒前
典雅问寒应助科研通管家采纳,获得10
3秒前
tough应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得30
4秒前
思源应助科研通管家采纳,获得10
4秒前
yanjiusheng完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
进步发布了新的文献求助10
4秒前
赘婿应助单眼皮女生采纳,获得30
6秒前
袁大头发布了新的文献求助10
9秒前
Jasper应助从容谷菱采纳,获得10
9秒前
9秒前
专炸油条完成签到 ,获得积分10
9秒前
11秒前
iNk应助Rui采纳,获得10
11秒前
进步完成签到,获得积分10
12秒前
着急的寻真完成签到,获得积分10
13秒前
13秒前
13秒前
popcorn完成签到,获得积分10
14秒前
无限亦云发布了新的文献求助10
15秒前
16秒前
JJQ发布了新的文献求助10
16秒前
Double_N完成签到,获得积分10
17秒前
laura发布了新的文献求助20
17秒前
呃呃发布了新的文献求助10
18秒前
厮人野发布了新的文献求助10
19秒前
kk完成签到,获得积分10
20秒前
独享发布了新的文献求助10
21秒前
a_jumper发布了新的文献求助150
24秒前
科研通AI5应助简单以宁2采纳,获得10
26秒前
26秒前
香蕉觅云应助贾克斯采纳,获得10
27秒前
28秒前
laura完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634