数学
半定规划
交叉口(航空)
二次规划
二次约束二次规划
椭球体
二阶锥规划
一般化
基质(化学分析)
领域(数学分析)
线性矩阵不等式
非线性规划
二次函数
可行区
二次方程
数学优化
最优化问题
非线性系统
数学分析
凸优化
材料科学
物理
复合材料
航空航天工程
工程类
天文
正多边形
量子力学
几何学
作者
J.F. Sturm,Shuzhong Zhang
标识
DOI:10.1287/moor.28.2.246.14485
摘要
We derive linear matrix inequality (LMI) characterizations and dual decomposition algorithms for certain matrix cones which are generated by a given set using generalized co-positivity. These matrix cones are in fact cones of nonconvex quadratic functions that are nonnegative on a certain domain. As a domain, we consider for instance the intersection of a (upper) level-set of a quadratic function and a half-plane. Consequently, we arrive at a generalization of Yakubovich's S-procedure result. Although the primary concern of this paper is to characterize the matrix cones by LMIs, we show, as an application of our results, that optimizing a general quadratic function over the intersection of an ellipsoid and a half-plane can be formulated as semidefinite programming (SDP), thus proving the polynomiality of this class of optimization problems, which arise, e.g., from the application of the trust region method for nonlinear programming. Other applications are in control theory and robust optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI