Matching by Propensity Score in Cohort Studies with Three Treatment Groups

倾向得分匹配 协变量 成对比较 统计 医学 均方误差 混淆 匹配(统计) 比较有效性研究 数学 病理 替代医学
作者
Jeremy A. Rassen,Abhi Shelat,Jessica M. Franklin,Robert J. Glynn,Daniel H. Solomon,Sebastian Schneeweiß
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:24 (3): 401-409 被引量:156
标识
DOI:10.1097/ede.0b013e318289dedf
摘要

Background: Nonrandomized pharmacoepidemiology generally compares one medication with another. For many conditions, clinicians can benefit from comparing the safety and effectiveness of three or more appropriate treatment options. We sought to compare three treatment groups simultaneously by creating 1:1:1 propensity score-matched cohorts. Methods: We developed a technique that estimates generalized propensity scores and then creates 1:1:1 matched sets. We compared this methodology with two existing approaches—construction of matched cohorts through a common-referent group and a pairwise match for each possible contrast. In a simulation, we varied unmeasured confounding, presence of treatment effect heterogeneity, and the prevalence of treatments and compared each method's bias, variance, and mean squared error (MSE) of the treatment effect. We applied these techniques to a cohort of rheumatoid arthritis patients treated with nonselective nonsteroidal anti-inflammatory drugs, COX-2 selective inhibitors, or opioids. Results: We performed 1000 simulation runs. In the base case, we observed an average bias of 0.4% (MSE × 100 = 0.2) in the three-way matching approach and an average bias of 0.3% (MSE × 100 = 0.2) with the pairwise technique. The techniques showed differing bias and MSE with increasing treatment effect heterogeneity and decreasing propensity score overlap. With highly unequal exposure prevalences, strong heterogeneity, and low overlap, we observed a bias of 6.5% (MSE × 100 = 10.8) in the three-way approach and 12.5% (MSE × 100 = 12.3) in the pairwise approach. The empirical study displayed better covariate balance using the pairwise approach. Point estimates were substantially similar. Conclusions: Our matching approach offers an effective way to study the safety and effectiveness of three treatment options. We recommend its use over the pairwise or common-referent approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开心完成签到,获得积分10
1秒前
风中的元菱完成签到,获得积分10
4秒前
碧蓝丹烟完成签到 ,获得积分10
4秒前
ghost完成签到,获得积分10
4秒前
旧雨新知完成签到 ,获得积分0
7秒前
yefeng完成签到,获得积分10
7秒前
流口水发布了新的文献求助10
9秒前
彩虹猫之刃完成签到,获得积分10
9秒前
完美世界应助雪花羔采纳,获得10
10秒前
Eason完成签到,获得积分10
11秒前
加油加油完成签到 ,获得积分10
12秒前
终生科研徒刑完成签到 ,获得积分10
14秒前
黙宇循光完成签到 ,获得积分10
15秒前
平常的毛豆应助小奇采纳,获得10
17秒前
20秒前
干净博涛完成签到 ,获得积分10
22秒前
风趣秋白完成签到,获得积分10
24秒前
HalfGumps完成签到,获得积分10
26秒前
危机的芸完成签到 ,获得积分10
27秒前
缓慢的可乐完成签到,获得积分10
27秒前
28秒前
edtaa完成签到 ,获得积分10
28秒前
过时的明辉完成签到,获得积分10
28秒前
32秒前
cdercder应助魏伯安采纳,获得10
33秒前
33秒前
优雅冰蝶完成签到,获得积分10
33秒前
kekekelili完成签到,获得积分10
33秒前
雪花羔完成签到,获得积分10
34秒前
害羞便当完成签到 ,获得积分10
34秒前
Kawhichan完成签到,获得积分10
34秒前
Jay发布了新的文献求助30
35秒前
tdtk发布了新的文献求助10
36秒前
轻松小张应助Alex采纳,获得30
36秒前
雪花羔发布了新的文献求助10
37秒前
夜曦完成签到 ,获得积分10
37秒前
Accept2024发布了新的文献求助10
37秒前
独孤阳光完成签到,获得积分10
38秒前
Angela完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290