Learning from Imbalanced Data

计算机科学 数据科学 原始数据 机器学习 人工智能 大数据 领域(数学) 数据挖掘 数学 程序设计语言 纯数学
作者
Haibo He,Edwardo A. Garcia
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:21 (9): 1263-1284 被引量:8087
标识
DOI:10.1109/tkde.2008.239
摘要

With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边佳佳完成签到,获得积分10
1秒前
joleisalau发布了新的文献求助10
3秒前
读研好难发布了新的文献求助20
4秒前
4秒前
畅快之柔发布了新的文献求助10
5秒前
5秒前
科研通AI5应助Anjianfubai采纳,获得10
7秒前
嘻嘻发布了新的文献求助10
8秒前
8秒前
于鹏完成签到,获得积分10
14秒前
Singularity应助嘻嘻采纳,获得10
15秒前
冷静的棒棒糖完成签到 ,获得积分10
15秒前
科研通AI2S应助smile采纳,获得10
18秒前
Blaseaka完成签到 ,获得积分10
18秒前
娃娃菜妮完成签到 ,获得积分10
19秒前
怕孤独的绮南完成签到,获得积分20
19秒前
Azure完成签到 ,获得积分10
22秒前
清水完成签到,获得积分10
24秒前
24秒前
科研通AI5应助小元采纳,获得10
25秒前
YSHZ发布了新的文献求助10
25秒前
YJL完成签到 ,获得积分10
26秒前
嘻嘻完成签到,获得积分10
26秒前
读研好难完成签到,获得积分10
28秒前
smile发布了新的文献求助10
30秒前
烟花应助霸气的梦露采纳,获得10
34秒前
Srishti完成签到,获得积分10
37秒前
Orange应助平平无奇小垃圾采纳,获得10
37秒前
Orange应助封腾采纳,获得10
39秒前
emberflow完成签到,获得积分10
39秒前
Hello完成签到,获得积分10
40秒前
Orange应助怡然的飞珍采纳,获得10
44秒前
ivylyu发布了新的文献求助30
45秒前
n3pu030036完成签到,获得积分10
46秒前
七七完成签到,获得积分10
47秒前
48秒前
50秒前
50秒前
拣尽南枝完成签到 ,获得积分10
50秒前
科研混子完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778003
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215195
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339