丙戊酸
抗生素
酶
化学
葡萄糖醛酸
鉴定(生物学)
水解酶
碳青霉烯
生物化学
生物
新陈代谢
癫痫
植物
神经科学
作者
Eiko Suzuki,Naotoshi Yamamura,Yuji Ogura,Daisuke Nakai,Kazuishi Kubota,Nobuhiro Kobayashi,Shinichi Miura,Osamu Okazaki
标识
DOI:10.1124/dmd.110.032938
摘要
Plasma levels of valproic acid (VPA) are decreased by concomitant use with carbapenem antibiotics, such as panipenem (PAPM). One of the plausible mechanisms of this interaction is the inhibition of VPA glucuronide (VPA-G) hydrolysis by carbapenems in the liver. To elucidate this interaction mechanism, we purified VPA-G hydrolase from human liver cytosol, in which the hydrolytic activity was mainly located. After chromatographic purification, the VPA-G hydrolase was identified as acylpeptide hydrolase (APEH). APEH-depleted cytosol, prepared by an immunodepletion method, completely lacked the hydrolytic activity. These results demonstrate that APEH is a single enzyme involved in PAPM-sensitive VPA-G hydrolysis in cytosol. In addition, the hydrolytic activity of recombinant human APEH was inhibited by PAPM and the inhibition profile by typical esterase inhibitors (diisopropyl fluorophosphate, 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuribenzoic acid, and d-saccharic acid 1,4-lactone) was similar to that of human liver cytosol. Cytosolic VPA-G hydrolase activity was slightly inhibited by cholinesterase and carboxylesterase inhibitors. beta-Glucuronidase activity remained in APEH-depleted cytosol, whereas VPA-G hydrolase activity was completely abolished. Thus, either cholinesterase, carboxylesterase, or beta-glucuronidase in cytosol would not be involved in VPA-G hydrolysis. Taken together, APEH plays a major role in the PAPM-sensitive VPA-G hydrolysis in the liver. These findings suggest that APEH could be a key enzyme for the drug interaction of VPA with carbapenems via VPA-G hydrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI