肌红蛋白
肾髓质
髓腔
肾
微循环
肾功能
血管收缩
髓质
医学
缺氧(环境)
肾循环
内科学
急性肾损伤
急性肾小管坏死
肾血流
内分泌学
解剖
化学
氧气
有机化学
作者
Samuel N. Heyman,Seymour Rosen,Sébastien Fuchs,F. H. Epstein,M Brezis
出处
期刊:Journal of The American Society of Nephrology
日期:1996-07-01
卷期号:7 (7): 1066-1074
被引量:85
摘要
Myoglobin induces renal injury by mechanisms that remain incompletely defined. In this study, the effects of myoglobin upon renal microcirculation, oxygenation, morphology, and function were investigated in anesthetized rats, and the contribution of coexisting perturbations to myoglobin nephrotoxicity were evaluated. Myoglobin infusion (3.3 mg/min) reduced outer medullary blood flow and Po2, whereas renal blood flow and cortical Po2 were unaffected. Myoglobin infusion (38 mg/100 g weight over 45 min) induced renal failure associated with collecting duct and medullary thick ascending limb dilation and casts, with focal tubular damage, confined mainly to the superficial cortex. Preconditioning with indomethacin, I-N-monomethyl arginine, and theophylline reduced cortical superficial damage but enhanced injury within the inner stripe of the outer medulla and in medullary rays, the zones of lowest O2 supply. In preconditioned animals, tubulorrhexis was primarily observed in collecting ducts transversing the inner stripe, and was remarkably reminiscent of human descriptions (J. Oliver et al., J Clin Invest 1951; 30: 1307-1440). Deterioration in kidney function closely correlated with morphologic features of both tubular obstruction and necrosis. In conclusion, medullary vasoconstriction and intrarenal hypoxia may play a role in myoglobin-induced renal failure. The deterioration in kidney function appears to reflect the combined effects of cortical damage, medullary hypoxic injury, and tubular obstruction.
科研通智能强力驱动
Strongly Powered by AbleSci AI