Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives

基因组学 生物技术 生物 多倍体 分子育种 种质资源 植物育种 农业 作物 适应性 遗传多样性 甘薯 基因组 遗传学 农学 基因 人口 植物 社会学 人口学 生态学
作者
Mengxiao Yan,Haozhen Nie,Yunze Wang,Xinyi Wang,Robert L. Jarret,Jiamin Zhao,Hongxia Wang,Jeong-Mo Yang
出处
期刊:Plant communications [Elsevier]
卷期号:3 (5): 100332-100332 被引量:18
标识
DOI:10.1016/j.xplc.2022.100332
摘要

Sweetpotato (Ipomoea batatas (L.) Lam.) is one of the most important root crops cultivated worldwide. Because of its adaptability, high yield potential, and nutritional value, sweetpotato has become an important food crop, particularly in developing countries. To ensure adequate crop yields to meet increasing demand, it is essential to enhance the tolerance of sweetpotato to environmental stresses and other yield-limiting factors. The highly heterozygous hexaploid genome of I. batatas complicates genetic studies and limits improvement of sweetpotato through traditional breeding. However, application of next-generation sequencing and high-throughput genotyping and phenotyping technologies to sweetpotato genetics and genomics research has provided new tools and resources for crop improvement. In this review, we discuss the genomics resources that are available for sweetpotato, including the current reference genome, databases, and available bioinformatics tools. We systematically review the current state of knowledge on the polyploid genetics of sweetpotato, including studies of its origin and germplasm diversity and the associated mapping of important agricultural traits. We then outline the conventional and molecular breeding approaches that have been applied to sweetpotato. Finally, we discuss future goals for genetic studies of sweetpotato and crop improvement via breeding in combination with state-of-the-art multi-omics approaches such as genomic selection and gene editing. These approaches will advance and accelerate genetic improvement of this important root crop and facilitate its sustainable global production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助jing111采纳,获得10
刚刚
麦霸一方完成签到,获得积分10
刚刚
xiaisxi完成签到,获得积分10
1秒前
1秒前
lanxinge完成签到 ,获得积分10
2秒前
2秒前
2秒前
竹子关注了科研通微信公众号
5秒前
5秒前
5秒前
迟pp发布了新的文献求助30
6秒前
9秒前
hyfwkd完成签到,获得积分10
10秒前
jing111发布了新的文献求助10
12秒前
朱子涵完成签到 ,获得积分10
13秒前
15秒前
15秒前
紫金大萝卜应助hj采纳,获得20
16秒前
大模型应助哈哈采纳,获得10
18秒前
18秒前
18秒前
lkl77发布了新的文献求助50
18秒前
张哈哈发布了新的文献求助10
20秒前
春天花会开完成签到,获得积分10
20秒前
酷波er应助大胆的星月采纳,获得10
20秒前
21秒前
22秒前
标致发布了新的文献求助10
23秒前
大模型应助Ll采纳,获得10
25秒前
十三发布了新的文献求助20
25秒前
lsy发布了新的文献求助10
26秒前
hululu完成签到 ,获得积分10
30秒前
lkl77完成签到,获得积分10
30秒前
31秒前
完美世界应助AXEIFORM采纳,获得10
32秒前
33秒前
小仙女完成签到,获得积分10
34秒前
35秒前
传奇3应助张哈哈采纳,获得10
35秒前
36秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423122
求助须知:如何正确求助?哪些是违规求助? 2111976
关于积分的说明 5347740
捐赠科研通 1839460
什么是DOI,文献DOI怎么找? 915665
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489747