Temperature Prediction of Flat Steel Box Girders of Long-Span Bridges Utilizing In Situ Environmental Parameters and Machine Learning

随机森林 风速 桥(图论) 工程类 预测建模 经验模型 结构健康监测 时间序列 风向 人工神经网络 结构工程 滞后 机器学习 气象学 模拟 计算机科学 地理 内科学 医学 计算机网络
作者
Zhi-wei Wang,Wen-ming Zhang,Yufeng Zhang,Zhao Liu
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:27 (3) 被引量:25
标识
DOI:10.1061/(asce)be.1943-5592.0001840
摘要

Design, construction, and maintenance of large-span bridges require an accurate assessment of the temperature field in flat steel box girders (FSBGs). While this field is controlled by various environmental (meteorological) factors, including temperature, solar radiation, humidity, wind speed, and wind direction, there is no comprehensive model for its prediction based on multiple environmental variables. Given this, two novel methods for calculating the cross-sectional effective temperature (ET) of the FSBG were proposed in this study. Based on the bridge’s environmental variables measured on-site, regression models for predicting ET and vertical temperature difference (VTD) in FSBG were introduced, including a random forest (RF) model and empirical formulas. The RF model’s hyperparameters were derived by the Bayesian optimization algorithm. The proposed approach was applied to the case study of the Sutong Bridge, China, using 2 years’ data samples collected via the bridge health monitoring system and Copernicus Climate Change Service. The model’s training and testing results proved that the predictive performance of the multifactor random forest model significantly exceeded that of the single-factor linear model by about 60%. The RF model’s accuracy in the ET/VTD prediction also outperformed the support vector regression model and back-propagation neural network model. Besides, the correlation analysis of environmental variables revealed a significant time-lag between ET/VTD and the surface solar radiation intensity (about 3 h). The predictive performance of the RF model considering the time-lag effect was further improved (by about 20%–30%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕴蝶完成签到,获得积分10
刚刚
刚刚
大力翠丝完成签到,获得积分10
1秒前
lcj1014发布了新的文献求助10
1秒前
江年完成签到 ,获得积分10
1秒前
星辰大海应助筱姐姐采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
hsn发布了新的文献求助10
2秒前
2秒前
2秒前
榛糕李完成签到,获得积分10
2秒前
李承月完成签到,获得积分10
3秒前
limerence发布了新的文献求助10
3秒前
tangxiaohui完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
彭于晏应助北冥鱼采纳,获得10
4秒前
5秒前
在水一方应助Clover采纳,获得10
5秒前
W昂发布了新的文献求助10
5秒前
明理的霸完成签到 ,获得积分10
5秒前
5秒前
Lyu完成签到,获得积分10
5秒前
科目三应助舒服的灰狼采纳,获得10
6秒前
orixero应助小王同学采纳,获得10
6秒前
wu发布了新的文献求助10
6秒前
zyyyyyy发布了新的文献求助10
6秒前
后夜完成签到,获得积分10
6秒前
Jasper应助豆腐干采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助Dreamy采纳,获得10
7秒前
7秒前
adkins发布了新的文献求助10
7秒前
Xu发布了新的文献求助10
7秒前
研友_LwlRen完成签到 ,获得积分10
7秒前
英姑应助BuTutou采纳,获得10
7秒前
墨白完成签到,获得积分10
8秒前
FashionBoy应助潇洒台灯采纳,获得10
8秒前
tangxiaohui发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943