A novel approach for cardiovascular disease prediction using machine learning algorithms

机器学习 计算机科学 人工智能 支持向量机 集成学习 阿达布思 分类器(UML) 二元分类 交叉验证 数据挖掘
作者
Saran Kumar Arunachalam,R. Rekha
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (19) 被引量:3
标识
DOI:10.1002/cpe.7027
摘要

Abstract For the past few decades, cardiovascular disease has shown a binding impact on the country's mortality rate. The prediction of cardiovascular disease is more challenging during the process of clinical data analysis. The emergence of Machine Learning approaches paved the way to predict the disease and determining the consequences of the disease in the earlier stage to help the physicians during complex decision‐making. This work adopts k‐Nearest Neighbor as baseline classifier and ensemble X‐boost, Adaboost, and Random subspace classifier model to predict heart disease and predict the features of cardiovascular disease using Linear Support Vector Feature Measure (). This model considers the diverse combination of features to make the better classification process. The model shows superior performance with precision via Clinical Decision Support System. The factors that influence the cardiovascular disease need to predict, and better decision is taken during the critical condition. Here, the online available University of California Irvine (UCI) Machine Learning dataset is used for training and testing where 80% data is considered for training and 20% considered for testing purpose. The simulation is done in MATLAB 2020b simulation environment, and the outcomes are compared with various existing approaches. Here, performance metrics like accuracy, precision, F‐measure, stability rate, region of curve, and recall is measured to show the model efficiency. The prediction accuracy of the proposed model is 96% which is higher than existing approaches. The overall performance of proposed ensemble model is 96% accuracy, 97% precision, 95% sensitivity, 95% F‐measure, 93% Matthew's correlation coefficients, 4.53% False Positive Rate, 3.10% False Negative Rate, and 96% True Positive Rate, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮发布了新的文献求助10
刚刚
明天又是美好的一天完成签到 ,获得积分10
刚刚
求知小生完成签到,获得积分10
刚刚
1秒前
科研小白完成签到,获得积分10
2秒前
李L完成签到,获得积分10
3秒前
changfox完成签到,获得积分10
8秒前
evilbatuu发布了新的文献求助10
9秒前
俭朴的大有完成签到,获得积分10
10秒前
现代的人达完成签到,获得积分10
12秒前
川上富江完成签到 ,获得积分10
12秒前
14秒前
chenxilulu完成签到,获得积分10
14秒前
Haonan完成签到,获得积分10
15秒前
白嫖论文完成签到 ,获得积分10
15秒前
青安发布了新的文献求助10
16秒前
22yh完成签到 ,获得积分10
16秒前
763完成签到 ,获得积分10
19秒前
和谐的醉山完成签到,获得积分10
19秒前
evilbatuu完成签到,获得积分10
19秒前
陶醉的钢笔完成签到 ,获得积分10
20秒前
21秒前
Echo完成签到 ,获得积分10
21秒前
百香果bxg完成签到 ,获得积分10
22秒前
burninhell完成签到,获得积分10
24秒前
xiaonanzi1完成签到,获得积分10
24秒前
李子完成签到,获得积分10
25秒前
留胡子的丹彤完成签到 ,获得积分10
26秒前
游大达完成签到,获得积分10
27秒前
27秒前
竹得风完成签到 ,获得积分10
27秒前
棵虫完成签到,获得积分10
30秒前
橘涂初九应助妮妮采纳,获得10
30秒前
Diego完成签到,获得积分10
30秒前
31秒前
蓝橙完成签到,获得积分10
32秒前
huhuan完成签到,获得积分10
34秒前
不无聊的从梦完成签到 ,获得积分10
36秒前
zain完成签到 ,获得积分10
36秒前
顺利萧发布了新的文献求助10
36秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921