Micro-expression recognition using 3D DenseNet fused Squeeze-and-Excitation Networks

面部表情 计算机科学 特征提取 特征(语言学) 表达式(计算机科学) 放大倍数 面部表情识别 任务(项目管理) 模式识别(心理学) 语音识别 人工智能 计算机视觉 面部识别系统 工程类 程序设计语言 哲学 语言学 系统工程
作者
Linqin Cai,Hao Li,Wei Dong,Haodu Fang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:119: 108594-108594 被引量:23
标识
DOI:10.1016/j.asoc.2022.108594
摘要

Micro-expression is a kind of facial feature that reflects the most real emotional state hidden in the human heart. Most of the existing micro-expression recognition methods are based on manual feature extraction of subtle movements of facial muscles. Due to its short duration and weak intensity, the accurate identification of micro-expression remains a challenging task. This paper investigates micro-expression recognition based on deep learning methods and proposes a three-dimensional SE-DenseNet architecture, which fused Squeeze-and-Excitation Networks with a 3D DenseNet and can automatically integrate the spatiotemporal features extracted from each video to increase the weight of valid feature maps. The proposed architecture first obtains apex frames from each video for the most obvious facial muscle movements and then amplifies facial muscle movements using Euler video magnification to significantly alleviate the issue of small sample size and weak intensity of micro-expression recognition. Finally, the pre-processed videos are fed into the 3D SE-DenseNet for further feature extraction as well as to perform micro-expression classification. Experiments are performed on three public datasets. Our best model obtains an overall accuracy of 95.12%, 92.96%, and 82.74% on SMIC, CAS(ME) 2 and CASME-II dataset, respectively. The experimental results show that the proposed methods can well describe the considerable details of micro-expression and outperform most of the state-of-the-art methods on three public datasets. • Appropriate preprocessing promotes the extraction of micro-expression features. • The three-dimensional DenseNet can extract facial features deeply. • SE block combined with DenseNet can facilitate feature extraction. • Different SE block combination methods significantly affect the recognition rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的谷南完成签到,获得积分10
刚刚
刚刚
刚刚
独行侠完成签到,获得积分10
1秒前
鑫鑫发布了新的文献求助10
1秒前
kangshuai完成签到,获得积分10
1秒前
1秒前
JamesPei应助情深以挽采纳,获得10
1秒前
水上书发布了新的文献求助10
1秒前
Asomy发布了新的文献求助10
1秒前
2秒前
xiaojie2024完成签到,获得积分10
2秒前
月寒发布了新的文献求助10
3秒前
sfsfes完成签到 ,获得积分10
3秒前
wangbw完成签到,获得积分10
4秒前
Owen应助愤怒的乐松采纳,获得10
4秒前
4秒前
轻松无剑完成签到,获得积分10
5秒前
5秒前
jiang完成签到 ,获得积分10
5秒前
hh发布了新的文献求助10
6秒前
wmk完成签到,获得积分10
7秒前
7秒前
华仔应助yuzi采纳,获得40
7秒前
Sacchride发布了新的文献求助10
7秒前
随机心电图应助chunjianghua采纳,获得10
7秒前
王哥完成签到,获得积分10
8秒前
8秒前
科研通AI5应助gao采纳,获得10
8秒前
qianyu完成签到,获得积分10
8秒前
香菜完成签到,获得积分10
9秒前
彭于晏应助111采纳,获得10
9秒前
二则完成签到 ,获得积分10
9秒前
科研通AI2S应助jm采纳,获得10
10秒前
ljz910005完成签到,获得积分10
10秒前
搜集达人应助默默的书蕾采纳,获得10
10秒前
大个应助xHBest采纳,获得10
10秒前
领导范儿应助noryan采纳,获得10
11秒前
宴之敖者完成签到,获得积分10
11秒前
海绵宝宝完成签到,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816440
求助须知:如何正确求助?哪些是违规求助? 3359935
关于积分的说明 10405824
捐赠科研通 3077960
什么是DOI,文献DOI怎么找? 1690410
邀请新用户注册赠送积分活动 813778
科研通“疑难数据库(出版商)”最低求助积分说明 767845