Smog prediction based on the deep belief - BP neural network model (DBN-BP)

人工神经网络 污染 计算机科学 人工智能 薄雾 反向传播 空气污染 环境科学 深度学习 气象学 深信不疑网络 地理 生态学 化学 有机化学 生物
作者
Jiawei Tian,Yan Liu,Wenfeng Zheng,Lirong Yin
出处
期刊:urban climate [Elsevier BV]
卷期号:41: 101078-101078 被引量:100
标识
DOI:10.1016/j.uclim.2021.101078
摘要

Smog pollution is becoming a significant problem for people worldwide, becoming an essential threat to the global environment. Many studies on haze already exist, which still need to continue in-depth research to better deal with haze problems. Due to its unique geographical environment, Sichuan has become one of the areas with severe smog pollution. Therefore, the research and prediction of smog pollution in Sichuan has become an urgent need. This paper proposes a deep learning technology based on a Deep Belief-Back Propagation neural network. It makes in-depth prediction research by using the air pollution data of PM2.5, PM10, O3, CO NO2, and SO2 in Sichuan smog to provide a decision-making basis for predicting and preventing smog polluted weather. According to the prediction results of the model, the concentrations of PM2.5 and PM10 in Chengdu were predicted. The analysis shows that the larger the number of hidden layers in the belief network, the higher the prediction accuracy. Under the same network, the prediction accuracy of PM2.5 is significantly higher than that of PM10. Compared with the traditional Back Propagation neural network, the prediction effect of the Deep Belief-Back Propagation neural network is better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮完成签到,获得积分10
1秒前
3秒前
Blossom关注了科研通微信公众号
5秒前
机读卡发布了新的文献求助30
5秒前
sland发布了新的文献求助10
5秒前
5秒前
6秒前
加油的老赵完成签到,获得积分10
6秒前
科研通AI5应助雪儿采纳,获得30
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
98484应助科研通管家采纳,获得10
8秒前
1111111111111完成签到,获得积分10
8秒前
8秒前
98484应助科研通管家采纳,获得10
9秒前
轻松小张应助科研通管家采纳,获得30
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
98484应助科研通管家采纳,获得20
9秒前
111发布了新的文献求助10
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
ZhouYW应助科研通管家采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
11秒前
xinlixi完成签到,获得积分0
11秒前
11秒前
杜梦寅发布了新的文献求助10
11秒前
科研通AI5应助1111111111111采纳,获得10
12秒前
13秒前
14秒前
所所应助许若南采纳,获得10
15秒前
15秒前
没药发布了新的文献求助10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797513
求助须知:如何正确求助?哪些是违规求助? 3342865
关于积分的说明 10313787
捐赠科研通 3059598
什么是DOI,文献DOI怎么找? 1678983
邀请新用户注册赠送积分活动 806288
科研通“疑难数据库(出版商)”最低求助积分说明 763058