止血器
止血
体内
生物医学工程
凝血酶
化学
材料科学
纳米技术
作者
Bitao Lu,Enling Hu,Ruiqi Xie,Kun Yu,Fei Lu,Rong Bao,Chenhui Wang,Guangqian Lan,Fangyin Dai
标识
DOI:10.1016/j.bioactmat.2022.01.002
摘要
Complex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and “blast” systems to deliver hemostats into the cavity of vase-type wounds. CaCO 3 /Fe 2 O 3 (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH 3 + ). The composite microparticles moved against blood flow under magnetic mediation and simultaneously disassembled for the burst release of thrombin stimulated by TXA-NH 3 + . The CO 2 bubbles generated during disassembly produced a “blast” that propelled thrombin into the wound cavity. Severe bleeding in a vase-type hemorrhage model in the rabbit liver was rapidly controlled within ∼60 s. Furthermore, in vivo subcutaneous muscle and liver implantation models demonstrated excellent biodegradability of MC colloidosomes. This study is the first to propose a novel strategy based on the principle of torpedoes for transporting hemostats into vase-type wounds to achieve rapid hemostasis, creating a new paradigm for combating trauma treatment. • Microcluster colloidosomes designed to move hemostats to vase-type wounds. • Colloidosomes equipped with magnetic-mediated navigation and gas blasting systems. • We proved magnetic-mediated motion and hemostasis mechanisms of colloidosomes. • In vitro and in vivo bleeding models were adopted to prove colloidosome hemostasis. • In vivo implantation models proved their good biocompatibility and biodegradability.
科研通智能强力驱动
Strongly Powered by AbleSci AI