A Surrogate Machine Learning Model for the Design of Single-Atom Catalyst on Carbon and Porphyrin Supports towards Electrochemistry

过电位 催化作用 电催化剂 电化学 化学 计算机科学 物理化学 电极 生物化学
作者
Mohsen Tamtaji,Shuguang Chen,Ziyang Hu,William A. Goddard,GuanHua Chen
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (21): 9992-10000 被引量:16
标识
DOI:10.1021/acs.jpcc.3c00765
摘要

We apply the machine learning (ML) tool to calculate the Gibbs free energy (ΔG) of reaction intermediates rapidly and accurately as a guide for designing porphyrin- and graphene-supported single-atom catalysts (SACs) toward electrochemical reactions. Based on the 2105 DFT calculation data from the literature, we trained a support vector machine (SVR) algorithm. The hyperparameters were optimized using Bayesian optimization along with 10-fold cross-validation to avoid overfitting. Based on the Shapley Additive exPlanation (SHAP) and permutation methods, the feature importance analysis suggests that the most important parameters are the number of pyridinic nitrogen (Npy), the number of d electrons (θd), and the number of valence electrons of reaction intermediates. Inspired by this feature importance analysis and the Pearson correlation coefficient, we found a linear dependent, simple, and general descriptor (φ) to describe ΔG of reaction intermediates (e.g., ΔGOH* = 0.020φ – 2.190). Using the trained SVR algorithm, ΔGOH*, ΔGO*, ΔGOOH*, ΔGOO*, ΔGH*, ΔGCOOH*, ΔGCO*, and ΔGN2* intermediates are predicted for the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and the CO2 reduction reaction (CO2RR). The SVR model predicts an ORR overpotential of 0.51 V and an HER overpotential of 0.22 V for FeN4-SAC. Moreover, we used the SVR algorithm for high-throughput screening of SACs, suggesting new SACs with low ORR overpotentials. This strategy provides a data-driven catalyst design method that significantly reduces the costs of DFT calculations while providing the means for designing SACs for electrocatalysis and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000应助缓慢的如波采纳,获得30
4秒前
王小新完成签到,获得积分10
6秒前
xx发布了新的文献求助10
6秒前
淡定的半梦完成签到 ,获得积分20
6秒前
未来完成签到,获得积分10
8秒前
欣喜的未来完成签到,获得积分20
9秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Li应助科研通管家采纳,获得10
11秒前
大腚疯猪应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
11秒前
yyryyrr发布了新的文献求助10
13秒前
hilknk完成签到,获得积分10
15秒前
16秒前
畅快的小兔子完成签到,获得积分10
17秒前
Orange应助xx采纳,获得10
18秒前
杨杨杨发布了新的文献求助200
20秒前
21秒前
某只橘猫君完成签到,获得积分10
22秒前
蔓越莓完成签到 ,获得积分10
23秒前
脑洞疼应助畅快的小兔子采纳,获得10
23秒前
24秒前
24秒前
26秒前
Nolan完成签到,获得积分10
27秒前
惠向雁完成签到,获得积分10
29秒前
29秒前
江夏完成签到 ,获得积分10
30秒前
running发布了新的文献求助10
30秒前
xxxqqq完成签到,获得积分10
34秒前
丘比特应助Lz0330采纳,获得10
35秒前
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843