亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Difference analysis of musculation and estimation of sEMG-to-force in process of increasing force and decreasing force

等长运动 信号(编程语言) 计算机科学 肌电图 收缩(语法) 光谱图 模式识别(心理学) 人工智能 物理医学与康复 医学 物理疗法 内科学 程序设计语言
作者
Yanxia Wu,Shili Liang,Zekun Chen,Xiaokang Qiao,Yong Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120445-120445 被引量:2
标识
DOI:10.1016/j.eswa.2023.120445
摘要

The movement of the human limb is driven by muscle contraction. Surface electromyography (sEMG) is a weak bioelectric activity generated during muscle contraction, which reflects information regarding muscle activation. The increasing force and the decreasing force are reverse processes. Investigating the difference in musculation between the two processes and establishing an input–output model between sEMG and force can clarify the biodynamics mechanism of the human body. In the study, we try to find the truth about the difference in musculation using sEMG signal in the process of increasing and decreasing force, and create a model of the relationship between sEMG and force. A synchronous data acquisition device is used to collect force and sEMG signals, including the raw sEMG signal and its envelope signal. A new method for extracting the feature of the sEMG signal based on the spectrogram is introduced. Up to sixteen features are extracted from the sEMG signal, and their performances are evaluated. The experimental results indicate that sliding mean filtering can significantly improve feature performance. A processing means of isometric force and sEMG feature is proposed. Difference in musculation about force-increasing and force-decreasing is detailedly analyzed by statistical T-test. We come to the conclusion that the sEMG signal evoked via musculation is not exactly the same in the two processes, with a more significant difference when the muscle contraction strength is weaker, and a less significant difference when the muscle contraction strength is stronger. Finally, five regression models are used for sEMG-to-force estimation, and their performances are compared separately. The experimental results show that the DNN exhibits the best performance, achieving a RMSE of 12.782 and a R2 of 0.911.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助铁光采纳,获得10
4秒前
伏城完成签到 ,获得积分10
23秒前
哦豁完成签到 ,获得积分10
26秒前
39秒前
呆萌黑猫发布了新的文献求助10
43秒前
bkagyin应助ppp采纳,获得10
52秒前
FashionBoy应助呆萌黑猫采纳,获得10
53秒前
1分钟前
ppp发布了新的文献求助10
1分钟前
米饭儿完成签到 ,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
义气幼菱发布了新的文献求助10
1分钟前
葉要加油完成签到 ,获得积分10
2分钟前
矢思然完成签到,获得积分10
2分钟前
ln完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Anto完成签到,获得积分10
2分钟前
3分钟前
小欣超人完成签到 ,获得积分10
3分钟前
铁光发布了新的文献求助10
3分钟前
Unicorn完成签到,获得积分10
3分钟前
刘辰完成签到 ,获得积分10
4分钟前
上官若男应助ppp采纳,获得10
4分钟前
wyj完成签到,获得积分10
4分钟前
Elvira完成签到,获得积分10
4分钟前
华仔应助孟繁荣采纳,获得10
4分钟前
完美世界应助eth采纳,获得10
4分钟前
4分钟前
SciGPT应助wyj采纳,获得10
4分钟前
Bov完成签到,获得积分10
4分钟前
ppp发布了新的文献求助10
4分钟前
4分钟前
孟繁荣发布了新的文献求助10
5分钟前
ppp完成签到,获得积分10
5分钟前
宅心仁厚完成签到 ,获得积分10
5分钟前
5分钟前
孟繁荣完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4763937
求助须知:如何正确求助?哪些是违规求助? 4102684
关于积分的说明 12694092
捐赠科研通 3819550
什么是DOI,文献DOI怎么找? 2108241
邀请新用户注册赠送积分活动 1132751
关于科研通互助平台的介绍 1012451