Virtual perturbations to assess explainability of deep-learning based cell fate predictors

深度学习 人工智能 计算机科学 人工神经网络 深层神经网络 机器学习 领域(数学) 简单(哲学) 数学 认识论 哲学 纯数学
作者
Christopher J. Soelistyo,Guillaume Charras,Alan R. Lowe
标识
DOI:10.1101/2023.07.17.548859
摘要

Explainable deep learning holds significant promise in extracting scientific insights from experimental observations. This is especially so in the field of bio-imaging, where the raw data is often voluminous, yet extremely variable and difficult to study. However, one persistent challenge in deep learning assisted scientific discovery is that the workings of artificial neural networks are often difficult to interpret. Here we present a simple technique for investigating the behaviour of trained neural networks: virtual perturbation. By making precise and systematic alterations to input data or internal representations thereof, we are able to discover causal relationships in the outputs of a deep learning model, and by extension, in the underlying phenomenon itself. As an exemplar, we use our recently described deep-learning based cell fate prediction model. We trained the network to predict the fate of less fit cells in an experimental model of mechanical cell competition. By applying virtual perturbation to the trained network, we discover causal relationships between a cell’s environment and eventual fate. We compare these with known properties of the biological system under investigation to demonstrate that the model faithfully captures insights previously established by experimental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
今后应助畅快的长颈鹿采纳,获得10
2秒前
宁安发布了新的文献求助10
3秒前
18651603532发布了新的文献求助10
4秒前
ruwawa0发布了新的文献求助20
4秒前
6秒前
7秒前
8秒前
研友_89Nm7L发布了新的文献求助10
9秒前
张巨锋发布了新的文献求助10
10秒前
研友_85YNe8发布了新的文献求助10
11秒前
锋feng发布了新的文献求助10
11秒前
11秒前
初夏发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助10
12秒前
14秒前
英姑应助孤独翠柏采纳,获得10
14秒前
ruwawa0完成签到,获得积分10
17秒前
充电宝应助电磁波十点半采纳,获得10
19秒前
龙澍发布了新的文献求助10
19秒前
初夏完成签到,获得积分20
19秒前
肉酱驳回了Hello应助
19秒前
欧小仙完成签到,获得积分10
20秒前
21秒前
21秒前
香蕉觅云应助东十八采纳,获得10
22秒前
一一完成签到,获得积分10
23秒前
成就的艳一应助18651603532采纳,获得10
25秒前
成就的艳一应助18651603532采纳,获得10
25秒前
K17完成签到,获得积分10
25秒前
喝呜昂完成签到 ,获得积分10
28秒前
zhang发布了新的文献求助10
28秒前
30秒前
无聊的万天完成签到,获得积分10
31秒前
尘染完成签到 ,获得积分10
33秒前
李健的粉丝团团长应助阿治采纳,获得100
34秒前
logen发布了新的文献求助10
34秒前
35秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942767
求助须知:如何正确求助?哪些是违规求助? 3487912
关于积分的说明 11045918
捐赠科研通 3218417
什么是DOI,文献DOI怎么找? 1778931
邀请新用户注册赠送积分活动 864463
科研通“疑难数据库(出版商)”最低求助积分说明 799540