An explainable ensemble of multi-view deep learning model for fake review detection

计算机科学 采购 人工智能 透明度(行为) 机器学习 深度学习 公制(单位) 能见度 数据科学 特征(语言学) 集成学习 计算机安全 营销 语言学 哲学 物理 光学 业务
作者
Rami Mohawesh,Shuxiang Xu,Matthew Springer,Yaser Jararweh,Muna Al-Hawawreh,Sumbal Maqsood
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (8): 101644-101644 被引量:5
标识
DOI:10.1016/j.jksuci.2023.101644
摘要

Online reviews significantly impact consumers who are purchasing or seeking services via the Internet. Businesses and review platforms need to manage these online reviews to avoid misleading customers through fake ones. This necessitates developing intelligent solutions to detect these fake reviews and prevent their negative impact on businesses and customers. Therefore, many fake review detection models have been proposed to help distinguish fake reviews from genuine ones. However, these techniques depend on a limited perspective of features, mainly review content, to detect fake reviews, leading to poor performance in discovering the new patterns of fake review content and the dynamic behaviour of spammers. Therefore, there is still a need to develop new solutions to detect the new patterns of fake reviews. Hence, this paper proposes an explainable multi-view deep learning model to identify fake reviews based on different feature perspectives and classifiers. The proposed model can extract essential features from different perspectives, including review content, reviewer data, and product description. Moreover, we employ an ensemble approach that combines three popular deep learning algorithms: Bi-LSTM, CNN, and DNN, to enhance the performance of the fake review detection model. The results of two real-life datasets presented demonstrated the efficiency of our proposed model, where it outperformed the state-of-the-art methods with improvements ranging from 1% to 7% in terms of the AUC metric. To provide visibility into the outcomes of our proposed model and demonstrate the trust and transparency in the obtained results, we also offer a comprehensive explanation for our model results using Shapely Additive Explanations (SHAP) method and attention techniques. The experimental results prove that our proposed model can provide reasonable explanations that help users understand why specific reviews are classified as fake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到 ,获得积分10
刚刚
hhllhh完成签到,获得积分10
9秒前
LinYX完成签到,获得积分10
11秒前
张小小完成签到,获得积分10
15秒前
ahh完成签到 ,获得积分10
17秒前
Erin完成签到 ,获得积分0
17秒前
西红柿不吃皮完成签到 ,获得积分10
19秒前
清爽的柚子完成签到 ,获得积分10
20秒前
琉璃岁月完成签到,获得积分10
21秒前
24秒前
30秒前
研友_8WO978发布了新的文献求助10
30秒前
mao完成签到,获得积分10
32秒前
赵文若完成签到,获得积分10
32秒前
林茵完成签到 ,获得积分10
33秒前
C_Li完成签到,获得积分10
34秒前
拾壹完成签到,获得积分10
34秒前
GB完成签到 ,获得积分10
36秒前
凤迎雪飘完成签到,获得积分10
40秒前
为你等候完成签到,获得积分10
41秒前
fxy完成签到 ,获得积分10
41秒前
研时友完成签到,获得积分10
44秒前
闪闪的斑马完成签到,获得积分10
44秒前
光亮面包完成签到 ,获得积分10
47秒前
petrichor完成签到 ,获得积分10
48秒前
研友_8WO978完成签到,获得积分10
49秒前
吴雪完成签到 ,获得积分10
50秒前
852应助幼安k采纳,获得10
53秒前
JYX完成签到 ,获得积分10
54秒前
Drtaoao完成签到 ,获得积分10
54秒前
研友_8WO978发布了新的文献求助10
56秒前
rafa完成签到 ,获得积分10
1分钟前
薄荷小新完成签到 ,获得积分10
1分钟前
petrichor完成签到 ,获得积分10
1分钟前
zoey完成签到,获得积分10
1分钟前
西溪完成签到,获得积分10
1分钟前
黑包包大人完成签到,获得积分10
1分钟前
白日焰火完成签到 ,获得积分10
1分钟前
汶南完成签到 ,获得积分10
1分钟前
fantexi113完成签到,获得积分0
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330118
关于积分的说明 10244374
捐赠科研通 3045503
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557