Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images

分割 计算机科学 人工智能 深度学习 图像分割 基线(sea) 模式识别(心理学) 机器学习 海洋学 地质学
作者
Guangqi Liu,Qinghai Ding,Haibo Luo,Min Sha,Xiang Li,Moran Ju
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106194-106194 被引量:37
标识
DOI:10.1016/j.compbiomed.2022.106194
摘要

The segmentation of cervical cytology images plays an important role in the automatic analysis of cervical cytology screening. Although deep learning-based segmentation methods are well-developed in other image segmentation areas, their application in the segmentation of cervical cytology images is still in the early stage. The most important reason for the slow progress is the lack of publicly available and high-quality datasets, and the study on the deep learning-based segmentation methods may be hampered by the present datasets which are either artificial or plagued by the issue of false-negative objects. In this paper, we develop a new dataset of cervical cytology images named Cx22, which consists of the completely annotated labels of the cellular instances based on the open-source images released by our institute previously. Firstly, we meticulously delineate the contours of 14,946 cellular instances in1320 images that are generated by our proposed ROI-based label cropping algorithm. Then, we propose the baseline methods for the deep learning-based semantic and instance segmentation tasks based on Cx22. Finally, through the experiments, we validate the task suitability of Cx22, and the results reveal the impact of false-negative objects on the performance of the baseline methods. Based on our work, Cx22 can provide a foundation for fellow researchers to develop high-performance deep learning-based methods for the segmentation of cervical cytology images. Other detailed information and step-by-step guidance on accessing the dataset are made available to fellow researchers at https://github.com/LGQ330/Cx22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
雨木目完成签到,获得积分10
4秒前
小高同学完成签到,获得积分10
6秒前
心灵美千秋完成签到 ,获得积分10
10秒前
李大壮完成签到 ,获得积分10
10秒前
10秒前
小黑完成签到 ,获得积分10
11秒前
isonomia完成签到,获得积分10
12秒前
CasterL发布了新的文献求助20
14秒前
细心健柏完成签到 ,获得积分10
17秒前
17秒前
舒心的青槐完成签到 ,获得积分10
19秒前
srx完成签到,获得积分10
19秒前
Nola完成签到 ,获得积分10
21秒前
zho应助lucky666tyy采纳,获得10
21秒前
LJJ完成签到 ,获得积分10
22秒前
时光友岸完成签到,获得积分10
22秒前
稳重奇异果完成签到,获得积分10
22秒前
单薄飞珍发布了新的文献求助10
23秒前
努力努力123完成签到,获得积分10
25秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
cdercder应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
fan应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
26秒前
眼睛大的寄容完成签到 ,获得积分10
27秒前
30秒前
ranj完成签到,获得积分10
33秒前
细心天德完成签到,获得积分10
34秒前
卫卫完成签到 ,获得积分10
40秒前
顺利白安完成签到,获得积分10
40秒前
lucky666tyy给lucky666tyy的求助进行了留言
40秒前
ZHANG完成签到,获得积分10
44秒前
CasterL完成签到,获得积分10
48秒前
努恩完成签到,获得积分10
57秒前
花花世界完成签到 ,获得积分10
58秒前
资山雁完成签到 ,获得积分10
1分钟前
舟遥遥完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777734
求助须知:如何正确求助?哪些是违规求助? 3323199
关于积分的说明 10213148
捐赠科研通 3038520
什么是DOI,文献DOI怎么找? 1667445
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275