亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sensing-Enhanced Channel Estimation for Near-Field XL-MIMO Systems

多输入多输出 领域(数学) 频道(广播) 估计 计算机科学 电信 工程类 数学 系统工程 纯数学
作者
Shicong Liu,Xianghao Yu,Zhen Gao,Jie Xu,Derrick Wing Kwan Ng,Shuguang Cui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.11809
摘要

Future sixth-generation (6G) systems are expected to leverage extremely large-scale multiple-input multiple-output (XL-MIMO) technology, which significantly expands the range of the near-field region. The spherical wavefront characteristics in the near field introduce additional degrees of freedom (DoFs), namely distance and angle, into the channel model, which leads to unique challenges in channel estimation (CE). In this paper, we propose a new sensing-enhanced uplink CE scheme for near-field XL-MIMO, which notably reduces the required quantity of baseband samples and the dictionary size. In particular, we first propose a sensing method that can be accomplished in a single time slot. It employs power sensors embedded within the antenna elements to measure the received power pattern rather than baseband samples. A time inversion algorithm is then proposed to precisely estimate the locations of users and scatterers, which offers a substantially lower computational complexity. Based on the estimated locations from sensing, a novel dictionary is then proposed by considering the eigen-problem based on the near-field transmission model, which facilitates efficient near-field CE with less baseband sampling and a more lightweight dictionary. Moreover, we derive the general form of the eigenvectors associated with the near-field channel matrix, revealing their noteworthy connection to the discrete prolate spheroidal sequence (DPSS). Simulation results unveil that the proposed time inversion algorithm achieves accurate localization with power measurements only, and remarkably outperforms various widely-adopted algorithms in terms of computational complexity. Furthermore, the proposed eigen-dictionary considerably improves the accuracy in CE with a compact dictionary size and a drastic reduction in baseband samples by up to 77%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
shaylie完成签到 ,获得积分10
4秒前
科研通AI2S应助Ulrica采纳,获得10
9秒前
皮本皮完成签到,获得积分10
14秒前
慕青应助知足的憨人*-*采纳,获得10
15秒前
科研螺丝完成签到 ,获得积分10
18秒前
610完成签到 ,获得积分10
21秒前
24秒前
43秒前
Ulrica发布了新的文献求助10
46秒前
gg发布了新的文献求助10
53秒前
55秒前
1分钟前
zho发布了新的文献求助10
1分钟前
right完成签到 ,获得积分10
1分钟前
1分钟前
等待的花生完成签到,获得积分10
1分钟前
动漫大师发布了新的文献求助10
1分钟前
gg完成签到,获得积分20
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
无限鸵鸟应助科研通管家采纳,获得100
1分钟前
1分钟前
科研助理完成签到 ,获得积分10
1分钟前
紫霃发布了新的文献求助10
1分钟前
紫霃完成签到,获得积分10
1分钟前
爆米花完成签到,获得积分10
1分钟前
Bowman完成签到,获得积分10
2分钟前
Ulrica发布了新的文献求助10
2分钟前
暴躁的寻云完成签到 ,获得积分10
2分钟前
dd完成签到 ,获得积分10
2分钟前
SciGPT应助fl采纳,获得10
2分钟前
2分钟前
2分钟前
fl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
fl发布了新的文献求助10
2分钟前
3分钟前
CipherSage应助知足的憨人*-*采纳,获得10
3分钟前
北侨发布了新的文献求助10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215