反冲
控制理论(社会学)
人工神经网络
李雅普诺夫函数
非线性系统
平滑度
补偿(心理学)
职位(财务)
有界函数
控制工程
计算机科学
理论(学习稳定性)
工程类
国家(计算机科学)
功能(生物学)
控制(管理)
数学
人工智能
算法
心理学
数学分析
物理
财务
量子力学
机器学习
进化生物学
精神分析
经济
生物
作者
輝美 日比,Tao Zou,WU Li-hua
标识
DOI:10.1177/01423312241242845
摘要
This paper introduces an adaptive neural network compensatory control approach designed for a 2-degree-of-freedom (2-DOF) helicopter system facing challenges such as input backlash and state constraints. The proposed methodology leverages a radial basis function (RBF) neural network to effectively approximate system uncertainties, mitigating the impact of nonlinear dynamics on control performance. To address the presence of nonlinear input backlash, a compensation technique is introduced to enhance the smoothness of input signals. In addition, for enhanced system safety, a barrier Lyapunov function is integrated to impose restrictions on position and velocity states, resulting in constrained control. Through a rigorous analysis using the Lyapunov direct method, this paper demonstrates the effectiveness of the proposed approach in achieving bounded stability of the system. The validation of the approach is further established through the presentation of simulation and experimental results, showcasing its effectiveness and feasibility in real-world applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI