Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition

运动表象 脑电图 卷积神经网络 人工智能 计算机科学 语音识别 一般化 机器学习 学习迁移 深度学习 模式识别(心理学) 心理学 脑-机接口 数学分析 数学 精神科
作者
Wenjie Li,Haoyu Li,Xinlin Sun,Huicong Kang,Shan An,Guoxin Wang,Zhongke Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026038-026038 被引量:3
标识
DOI:10.1088/1741-2552/ad3986
摘要

Abstract Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的鲂完成签到,获得积分10
3秒前
TiAmo完成签到 ,获得积分10
3秒前
iu发布了新的文献求助10
5秒前
田様应助丫丫采纳,获得10
7秒前
Akim应助烟雨笙寒采纳,获得10
8秒前
11秒前
12秒前
12秒前
祁问儿完成签到 ,获得积分10
12秒前
14秒前
爱学习的小花生完成签到,获得积分10
14秒前
Xiaoxiao应助飞飞飞采纳,获得10
15秒前
Orange应助Xuexi采纳,获得10
18秒前
映城发布了新的文献求助50
18秒前
19秒前
22秒前
24秒前
25秒前
25秒前
27秒前
慕青应助简单的冬灵采纳,获得10
27秒前
Owen应助映城采纳,获得50
27秒前
酥糖完成签到,获得积分10
28秒前
离开土豆发布了新的文献求助10
28秒前
29秒前
赘婿应助344uyuhhjkfjjhgv采纳,获得10
29秒前
呆萌鱼完成签到,获得积分10
30秒前
30秒前
天马行空发布了新的文献求助10
32秒前
大个应助Catherine_Song采纳,获得10
32秒前
ZSQ完成签到,获得积分20
33秒前
yk32315发布了新的文献求助10
34秒前
34秒前
35秒前
希望天下0贩的0应助iu采纳,获得10
35秒前
桐桐应助开心的小泽采纳,获得10
36秒前
37秒前
38秒前
39秒前
寂寞的冥王星完成签到,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785889
求助须知:如何正确求助?哪些是违规求助? 3331309
关于积分的说明 10250909
捐赠科研通 3046810
什么是DOI,文献DOI怎么找? 1672193
邀请新用户注册赠送积分活动 801094
科研通“疑难数据库(出版商)”最低求助积分说明 759994