Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition

运动表象 脑电图 卷积神经网络 人工智能 计算机科学 语音识别 一般化 机器学习 学习迁移 深度学习 模式识别(心理学) 心理学 脑-机接口 数学 精神科 数学分析
作者
Wenjie Li,Haoyu Li,Xinlin Sun,Huicong Kang,Shan An,Guoxin Wang,Zhongke Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026038-026038 被引量:3
标识
DOI:10.1088/1741-2552/ad3986
摘要

Abstract Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偶然847完成签到,获得积分10
1秒前
sunce1990完成签到 ,获得积分10
2秒前
王士钰发布了新的文献求助10
4秒前
4秒前
HY完成签到,获得积分10
5秒前
6秒前
桐桐应助liiy采纳,获得10
6秒前
6秒前
科目三应助魏晓宇采纳,获得10
7秒前
小二郎应助高高代珊采纳,获得10
7秒前
9秒前
9秒前
欧凰发布了新的文献求助10
9秒前
10秒前
雍远望发布了新的文献求助10
11秒前
香蕉晓曼发布了新的文献求助10
12秒前
13秒前
1234567发布了新的文献求助10
14秒前
15秒前
Iven发布了新的文献求助10
16秒前
Akim应助高高代珊采纳,获得10
16秒前
16秒前
孤星泪发布了新的文献求助10
16秒前
KDC发布了新的文献求助10
17秒前
17秒前
18秒前
寄草完成签到,获得积分10
19秒前
19秒前
香蕉晓曼完成签到,获得积分10
19秒前
斯文败类应助KDC采纳,获得10
20秒前
MaRulong发布了新的文献求助10
20秒前
23秒前
23秒前
SciGPT应助LanXiaohong采纳,获得10
23秒前
23秒前
1234567发布了新的文献求助10
24秒前
wildeager应助高高代珊采纳,获得10
24秒前
25秒前
Hank发布了新的文献求助10
27秒前
bbbabo发布了新的文献求助10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082955
求助须知:如何正确求助?哪些是违规求助? 3622222
关于积分的说明 11491182
捐赠科研通 3337161
什么是DOI,文献DOI怎么找? 1834493
邀请新用户注册赠送积分活动 903413
科研通“疑难数据库(出版商)”最低求助积分说明 821584