Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis

可解释性 人工智能 卷积神经网络 肺癌 深度学习 机器学习 结核(地质) 计算机科学 肺癌筛查 模式识别(心理学) 医学 病理 生物 古生物学
作者
Wu Quanyang,Yao Huang,Sicong Wang,Qi Linlin,Zewei Zhang,Hou Donghui,Hongjia Li,Shijun Zhao
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (7) 被引量:29
标识
DOI:10.1002/cam4.7140
摘要

Abstract Background The exceptional capabilities of artificial intelligence (AI) in extracting image information and processing complex models have led to its recognition across various medical fields. With the continuous evolution of AI technologies based on deep learning, particularly the advent of convolutional neural networks (CNNs), AI presents an expanded horizon of applications in lung cancer screening, including lung segmentation, nodule detection, false‐positive reduction, nodule classification, and prognosis. Methodology This review initially analyzes the current status of AI technologies. It then explores the applications of AI in lung cancer screening, including lung segmentation, nodule detection, and classification, and assesses the potential of AI in enhancing the sensitivity of nodule detection and reducing false‐positive rates. Finally, it addresses the challenges and future directions of AI in lung cancer screening. Results AI holds substantial prospects in lung cancer screening. It demonstrates significant potential in improving nodule detection sensitivity, reducing false‐positive rates, and classifying nodules, while also showing value in predicting nodule growth and pathological/genetic typing. Conclusions AI offers a promising supportive approach to lung cancer screening, presenting considerable potential in enhancing nodule detection sensitivity, reducing false‐positive rates, and classifying nodules. However, the universality and interpretability of AI results need further enhancement. Future research should focus on the large‐scale validation of new deep learning‐based algorithms and multi‐center studies to improve the efficacy of AI in lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助欣喜依白采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
碧蓝秋双发布了新的文献求助10
2秒前
赘婿应助agnes采纳,获得10
2秒前
3秒前
5秒前
5秒前
熊巴巴完成签到 ,获得积分10
5秒前
5秒前
xmx发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
fghyjnu完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
晨曦发布了新的文献求助10
7秒前
小魏完成签到,获得积分10
8秒前
9秒前
9秒前
天天开心完成签到 ,获得积分10
11秒前
南山发布了新的文献求助10
11秒前
Ran发布了新的文献求助10
12秒前
12秒前
WN发布了新的文献求助10
13秒前
13秒前
碧蓝秋双完成签到 ,获得积分20
15秒前
嘁嘁淇完成签到,获得积分10
17秒前
Jervis完成签到 ,获得积分10
17秒前
曾经曼彤发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145722
求助须知:如何正确求助?哪些是违规求助? 4342894
关于积分的说明 13524760
捐赠科研通 4183852
什么是DOI,文献DOI怎么找? 2294293
邀请新用户注册赠送积分活动 1294700
关于科研通互助平台的介绍 1237769