Crafting an Exceptionally Redox-Active Organic Molecule Boasting Superior Electron Mobility for High-Performance Electrochemical Desalination

氧化还原 电化学 海水淡化 分子 材料科学 电子传输链 纳米技术 化学工程 有机分子 化学 无机化学 有机化学 电极 物理化学 工程类 生物化学
作者
Yueheng Tao,Jing Jin,Yujie Cui,Houxiang Wang,Zhanyang Qian,Minjie Shi
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (44): 16434-16443
标识
DOI:10.1021/acssuschemeng.4c06939
摘要

Access to freshwater is crucial for a sustainable environment and human ecosystems. Hybrid capacitive deionization (HCDI) based on attractive pseudocapacitive reactions is considered a promising environmentally friendly and energy-saving electrochemical desalination technology. However, the application of HCDI technology is still limited, mainly due to the unsatisfactory ion adsorption ability of the pseudocapacitive electrode. Herein, we unveil an innovative redox-active organic molecule (PATD) that showcases outstanding pseudocapacitive properties for electrochemical desalination. Notably, the integration of redox-active C═O and C═N groups in the PATD molecule promotes stable and efficient pseudocapacitive reactions. Additionally, the rigid molecular structure, combined with a minimal HOMO–LUMO energy gap, ensures exceptional redox characteristics and superior electron transfer capability of the PATD molecule, which are substantiated by experimental evidence and theoretical studies. As an electrode, the PATD molecule exhibits significant pseudocapacitive characteristics along with excellent long-term stability, retaining 89.0% of its capacitance after 5000 cycles in a NaCl aqueous solution. In practical applications, the developed HCDI device incorporating the PATD electrode demonstrates a remarkably high salt removal capacity of 56.9 mg g–1, a swift average removal rate of 1.9 mg g–1 min–1, and consistent regeneration performance while attaining reliable energy recovery, which highlights its promising prospects for sustainable desalination technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Happer发布了新的文献求助10
刚刚
月满西楼ahh完成签到,获得积分10
1秒前
shanika发布了新的文献求助10
3秒前
情怀应助可可采纳,获得10
5秒前
平安喜乐发布了新的文献求助10
6秒前
星辰大海应助美好醉柳采纳,获得30
11秒前
117完成签到,获得积分20
11秒前
11秒前
coco发布了新的文献求助10
12秒前
牛牛完成签到,获得积分10
13秒前
yang完成签到,获得积分20
13秒前
13秒前
香蕉觅云应助可耐的凌旋采纳,获得10
13秒前
13秒前
Rita应助废废废采纳,获得10
14秒前
阿鑫完成签到 ,获得积分10
15秒前
夏尔酱发布了新的文献求助10
17秒前
17秒前
CNAxiaozhu7应助爱听歌契采纳,获得10
20秒前
Happer完成签到,获得积分10
20秒前
Vresty完成签到,获得积分10
23秒前
科研通AI5应助11采纳,获得10
24秒前
顺利莛发布了新的文献求助10
25秒前
帅气学姐完成签到,获得积分10
28秒前
29秒前
30秒前
隐形曼青应助灵巧的傲柏采纳,获得10
31秒前
32秒前
34秒前
隐形曼青应助vidgers采纳,获得10
34秒前
36秒前
小熊猫发布了新的文献求助10
36秒前
李爱国应助夏尔酱采纳,获得10
37秒前
BZPL完成签到,获得积分10
37秒前
互助棍哥完成签到,获得积分10
38秒前
Iaint完成签到,获得积分10
39秒前
11发布了新的文献求助10
42秒前
xiaoseven关注了科研通微信公众号
45秒前
星辰大海应助泡沫采纳,获得10
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800330
求助须知:如何正确求助?哪些是违规求助? 3345625
关于积分的说明 10326061
捐赠科研通 3062064
什么是DOI,文献DOI怎么找? 1680781
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557