亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancement of Large Language Models' Performance in Diabetes Education: Retrieval-Augmented Generation Approach (Preprint)

自动汇总 集合(抽象数据类型) 计算机科学 2型糖尿病 糖尿病 情报检索 医学 程序设计语言 内分泌学
作者
Dingqiao Wang,J. K. Liang,Jinguo Ye,Jingni Li,J Li,Qikai Zhang,Qiuling Hu,Caineng Pan,Dongliang Wang,Z Y Liu,Wen Shi,Danli Shi,Fei Li,Bo Qu,Yingfeng Zheng
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e58041-e58041 被引量:16
标识
DOI:10.2196/58041
摘要

Background Large language models (LLMs) demonstrated advanced performance in processing clinical information. However, commercially available LLMs lack specialized medical knowledge and remain susceptible to generating inaccurate information. Given the need for self-management in diabetes, patients commonly seek information online. We introduce the Retrieval-augmented Information System for Enhancement (RISE) framework and evaluate its performance in enhancing LLMs to provide accurate responses to diabetes-related inquiries. Objective This study aimed to evaluate the potential of the RISE framework, an information retrieval and augmentation tool, to improve the LLM’s performance to accurately and safely respond to diabetes-related inquiries. Methods The RISE, an innovative retrieval augmentation framework, comprises 4 steps: rewriting query, information retrieval, summarization, and execution. Using a set of 43 common diabetes-related questions, we evaluated 3 base LLMs (GPT-4, Anthropic Claude 2, Google Bard) and their RISE-enhanced versions respectively. Assessments were conducted by clinicians for accuracy and comprehensiveness and by patients for understandability. Results The integration of RISE significantly improved the accuracy and comprehensiveness of responses from all 3 base LLMs. On average, the percentage of accurate responses increased by 12% (15/129) with RISE. Specifically, the rates of accurate responses increased by 7% (3/43) for GPT-4, 19% (8/43) for Claude 2, and 9% (4/43) for Google Bard. The framework also enhanced response comprehensiveness, with mean scores improving by 0.44 (SD 0.10). Understandability was also enhanced by 0.19 (SD 0.13) on average. Data collection was conducted from September 30, 2023 to February 5, 2024. Conclusions The RISE significantly improves LLMs’ performance in responding to diabetes-related inquiries, enhancing accuracy, comprehensiveness, and understandability. These improvements have crucial implications for RISE’s future role in patient education and chronic illness self-management, which contributes to relieving medical resource pressures and raising public awareness of medical knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
19秒前
36秒前
JHY发布了新的文献求助10
41秒前
Lucas应助Yong采纳,获得10
1分钟前
1分钟前
Yong发布了新的文献求助10
1分钟前
满意的伊发布了新的文献求助10
1分钟前
2分钟前
2分钟前
lililili发布了新的文献求助10
2分钟前
kkkkk发布了新的文献求助555
2分钟前
量子星尘发布了新的文献求助10
2分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
清秀尔竹完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
WeihaoJin发布了新的文献求助10
6分钟前
Hello应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
多情易蓉完成签到,获得积分10
6分钟前
慕青应助xuan采纳,获得10
6分钟前
7分钟前
科研通AI6应助hgl采纳,获得10
7分钟前
xuan发布了新的文献求助10
7分钟前
愉快的犀牛完成签到 ,获得积分10
8分钟前
kzf丶bryant发布了新的文献求助10
8分钟前
8分钟前
上官若男应助科研通管家采纳,获得10
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
华仔应助科研通管家采纳,获得30
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
8分钟前
慕青应助yeahyeahyeah采纳,获得10
8分钟前
zzgpku完成签到,获得积分0
8分钟前
hgl完成签到,获得积分10
8分钟前
烟花应助xuan采纳,获得10
8分钟前
8分钟前
xuan完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4706319
求助须知:如何正确求助?哪些是违规求助? 4072575
关于积分的说明 12592710
捐赠科研通 3773719
什么是DOI,文献DOI怎么找? 2084675
邀请新用户注册赠送积分活动 1111756
科研通“疑难数据库(出版商)”最低求助积分说明 989512