亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate EVSI Estimation for Nonlinear Models Using the Gaussian Approximation Method

蒙特卡罗方法 高斯分布 非线性系统 数学优化 条件期望 计算机科学 数学 非参数统计 花键(机械) 条件概率分布 算法 应用数学 计量经济学 统计 结构工程 物理 量子力学 工程类
作者
Linke Li,Hawre Jalal,Anna Heath
出处
期刊:Medical Decision Making [SAGE Publishing]
卷期号:44 (7): 787-801 被引量:1
标识
DOI:10.1177/0272989x241264287
摘要

Background The expected value of sample information (EVSI) measures the expected benefits that could be obtained by collecting additional data. Estimating EVSI using the traditional nested Monte Carlo method is computationally expensive, but the recently developed Gaussian approximation (GA) approach can efficiently estimate EVSI across different sample sizes. However, the conventional GA may result in biased EVSI estimates if the decision models are highly nonlinear. This bias may lead to suboptimal study designs when GA is used to optimize the value of different studies. Therefore, we extend the conventional GA approach to improve its performance for nonlinear decision models. Methods Our method provides accurate EVSI estimates by approximating the conditional expectation of the benefit based on 2 steps. First, a Taylor series approximation is applied to estimate the conditional expectation of the benefit as a function of the conditional moments of the parameters of interest using a spline, which is fitted to the samples of the parameters and the corresponding benefits. Next, the conditional moments of parameters are approximated by the conventional GA and Fisher information. The proposed approach is applied to several data collection exercises involving non-Gaussian parameters and nonlinear decision models. Its performance is compared with the nested Monte Carlo method, the conventional GA approach, and the nonparametric regression-based method for EVSI calculation. Results The proposed approach provides accurate EVSI estimates across different sample sizes when the parameters of interest are non-Gaussian and the decision models are nonlinear. The computational cost of the proposed method is similar to that of other novel methods. Conclusions The proposed approach can estimate EVSI across sample sizes accurately and efficiently, which may support researchers in determining an economically optimal study design using EVSI. Highlights The Gaussian approximation method efficiently estimates the expected value of sample information (EVSI) for clinical trials with varying sample sizes, but it may introduce bias when health economic models have a nonlinear structure. We introduce the spline-based Taylor series approximation method and combine it with the original Gaussian approximation to correct the nonlinearity-induced bias in EVSI estimation. Our approach can provide more precise EVSI estimates for complex decision models without sacrificing computational efficiency, which can enhance the resource allocation strategies from the cost-effective perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywzwszl完成签到,获得积分10
8秒前
华仔应助隔壁老王采纳,获得10
11秒前
21秒前
Gary完成签到 ,获得积分10
47秒前
满意的伊发布了新的文献求助10
58秒前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
2分钟前
生信小菜鸟完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
2分钟前
Boris完成签到 ,获得积分10
2分钟前
bc举报拓跋静珊求助涉嫌违规
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
4分钟前
子阅发布了新的文献求助10
4分钟前
林夕完成签到 ,获得积分10
5分钟前
水的很厉害完成签到,获得积分10
5分钟前
5分钟前
子阅发布了新的文献求助10
5分钟前
bc驳回了诗轩应助
5分钟前
6分钟前
爱桃子发布了新的文献求助10
6分钟前
bc完成签到,获得积分0
6分钟前
7分钟前
喜看财经发布了新的文献求助10
7分钟前
7分钟前
DrS发布了新的文献求助10
7分钟前
DrS完成签到,获得积分10
8分钟前
8分钟前
8分钟前
居居侠完成签到 ,获得积分10
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
Anewone发布了新的文献求助30
9分钟前
10分钟前
洁净的钢笔完成签到 ,获得积分10
10分钟前
不割包皮重口裂奇完成签到,获得积分10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360188
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058