亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey on ensemble learning under the era of deep learning

深度学习 人工智能 集成学习 计算机科学 机器学习 人工神经网络 集合预报 深信不疑网络 深层神经网络 维数之咒
作者
Yongquan Yang,Haijun Lv,Ning Chen
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (6): 5545-5589 被引量:201
标识
DOI:10.1007/s10462-022-10283-5
摘要

Due to the dominant position of deep learning (mostly deep neural networks) in various artificial intelligence applications, recently, ensemble learning based on deep neural networks (ensemble deep learning) has shown significant performances in improving the generalization of learning system. However, since modern deep neural networks usually have millions to billions of parameters, the time and space overheads for training multiple base deep learners and testing with the ensemble deep learner are far greater than that of traditional ensemble learning. Though several algorithms of fast ensemble deep learning have been proposed to promote the deployment of ensemble deep learning in some applications, further advances still need to be made for many applications in specific fields, where the developing time and computing resources are usually restricted or the data to be processed is of large dimensionality. An urgent problem needs to be solved is how to take the significant advantages of ensemble deep learning while reduce the required expenses so that many more applications in specific fields can benefit from it. For the alleviation of this problem, it is essential to know about how ensemble learning has developed under the era of deep learning. Thus, in this article, we present fundamental discussions focusing on data analyses of published works, methodologies, recent advances and unattainability of traditional ensemble learning and ensemble deep learning. We hope this article will be helpful to realize the intrinsic problems and technical challenges faced by future developments of ensemble learning under the era of deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助kangkang采纳,获得10
5秒前
11秒前
25秒前
37秒前
sjs11完成签到,获得积分10
38秒前
Doctor.TANG完成签到 ,获得积分10
44秒前
54秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
我是老大应助jianglan采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
balabala完成签到 ,获得积分10
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
1分钟前
Rocky_Qi发布了新的文献求助10
1分钟前
Rocky_Qi完成签到,获得积分10
2分钟前
雪白的夜香完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Akiii_完成签到,获得积分10
2分钟前
3分钟前
3分钟前
hongxing liu发布了新的文献求助10
3分钟前
小李新人完成签到 ,获得积分10
3分钟前
研友_R2D2发布了新的文献求助10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
hongxing liu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
jianglan发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482476
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512349
什么是DOI,文献DOI怎么找? 2472899
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432565