A Survey on ensemble learning under the era of deep learning

深度学习 人工智能 集成学习 计算机科学 机器学习 人工神经网络 集合预报 深信不疑网络 深层神经网络 维数之咒
作者
Yongquan Yang,Haijun Lv,Ning Chen
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (6): 5545-5589 被引量:201
标识
DOI:10.1007/s10462-022-10283-5
摘要

Due to the dominant position of deep learning (mostly deep neural networks) in various artificial intelligence applications, recently, ensemble learning based on deep neural networks (ensemble deep learning) has shown significant performances in improving the generalization of learning system. However, since modern deep neural networks usually have millions to billions of parameters, the time and space overheads for training multiple base deep learners and testing with the ensemble deep learner are far greater than that of traditional ensemble learning. Though several algorithms of fast ensemble deep learning have been proposed to promote the deployment of ensemble deep learning in some applications, further advances still need to be made for many applications in specific fields, where the developing time and computing resources are usually restricted or the data to be processed is of large dimensionality. An urgent problem needs to be solved is how to take the significant advantages of ensemble deep learning while reduce the required expenses so that many more applications in specific fields can benefit from it. For the alleviation of this problem, it is essential to know about how ensemble learning has developed under the era of deep learning. Thus, in this article, we present fundamental discussions focusing on data analyses of published works, methodologies, recent advances and unattainability of traditional ensemble learning and ensemble deep learning. We hope this article will be helpful to realize the intrinsic problems and technical challenges faced by future developments of ensemble learning under the era of deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯大夫发布了新的文献求助30
1秒前
wilson完成签到,获得积分10
1秒前
大个应助tfli采纳,获得30
2秒前
3秒前
5秒前
balabala完成签到,获得积分10
7秒前
鲜艳的小甜瓜完成签到,获得积分10
8秒前
牧长一完成签到 ,获得积分0
9秒前
丰富咖啡完成签到,获得积分10
9秒前
9秒前
hana完成签到,获得积分20
9秒前
fucker发布了新的文献求助10
10秒前
学分完成签到 ,获得积分10
10秒前
LTY发布了新的文献求助10
10秒前
lucky完成签到 ,获得积分10
10秒前
田様应助轩辕剑身采纳,获得10
11秒前
11秒前
cocj完成签到,获得积分10
11秒前
11秒前
VirSnorlax完成签到,获得积分10
12秒前
宇称yu完成签到 ,获得积分10
13秒前
361关闭了361文献求助
13秒前
13秒前
星星完成签到,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
烟花应助小林野采纳,获得10
15秒前
lindalin发布了新的文献求助10
16秒前
16秒前
SEAL发布了新的文献求助10
17秒前
内向花卷发布了新的文献求助10
19秒前
夹心发布了新的文献求助10
20秒前
Damon完成签到 ,获得积分10
22秒前
Aha完成签到 ,获得积分10
22秒前
23秒前
24秒前
碧蓝世立发布了新的文献求助10
26秒前
LTY完成签到,获得积分10
26秒前
27秒前
tfli发布了新的文献求助30
28秒前
李爱国应助sherry221采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Chirality Second Edition 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4975608
求助须知:如何正确求助?哪些是违规求助? 4229992
关于积分的说明 13174003
捐赠科研通 4020036
什么是DOI,文献DOI怎么找? 2199468
邀请新用户注册赠送积分活动 1211980
关于科研通互助平台的介绍 1128056