亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey on ensemble learning under the era of deep learning

深度学习 人工智能 集成学习 计算机科学 机器学习 人工神经网络 集合预报 深信不疑网络 深层神经网络 维数之咒
作者
Yongquan Yang,Haijun Lv,Ning Chen
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (6): 5545-5589 被引量:147
标识
DOI:10.1007/s10462-022-10283-5
摘要

Due to the dominant position of deep learning (mostly deep neural networks) in various artificial intelligence applications, recently, ensemble learning based on deep neural networks (ensemble deep learning) has shown significant performances in improving the generalization of learning system. However, since modern deep neural networks usually have millions to billions of parameters, the time and space overheads for training multiple base deep learners and testing with the ensemble deep learner are far greater than that of traditional ensemble learning. Though several algorithms of fast ensemble deep learning have been proposed to promote the deployment of ensemble deep learning in some applications, further advances still need to be made for many applications in specific fields, where the developing time and computing resources are usually restricted or the data to be processed is of large dimensionality. An urgent problem needs to be solved is how to take the significant advantages of ensemble deep learning while reduce the required expenses so that many more applications in specific fields can benefit from it. For the alleviation of this problem, it is essential to know about how ensemble learning has developed under the era of deep learning. Thus, in this article, we present fundamental discussions focusing on data analyses of published works, methodologies, recent advances and unattainability of traditional ensemble learning and ensemble deep learning. We hope this article will be helpful to realize the intrinsic problems and technical challenges faced by future developments of ensemble learning under the era of deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
37秒前
43秒前
早睡一哥完成签到,获得积分10
48秒前
002完成签到,获得积分10
54秒前
包容的剑完成签到 ,获得积分10
57秒前
1分钟前
003完成签到,获得积分10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
1分钟前
Sandy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Sandy完成签到,获得积分10
1分钟前
传奇3应助天空之城采纳,获得10
1分钟前
1分钟前
1分钟前
天空之城发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
豌豆发布了新的文献求助10
2分钟前
我是老大应助豌豆采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
111完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
柯伊达完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667367
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229