已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:6
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天海完成签到,获得积分0
1秒前
bob完成签到 ,获得积分10
2秒前
4秒前
独指蜗牛完成签到 ,获得积分10
5秒前
Solomon完成签到 ,获得积分0
6秒前
7秒前
小遇完成签到 ,获得积分10
9秒前
大东东发布了新的文献求助10
10秒前
苏苏发布了新的文献求助10
12秒前
15秒前
爆米花应助敏感的板栗采纳,获得10
18秒前
大东东完成签到,获得积分10
18秒前
隐形曼青应助coral采纳,获得10
19秒前
顾矜应助小元采纳,获得10
20秒前
20秒前
janice116688完成签到,获得积分10
21秒前
22秒前
十七完成签到 ,获得积分10
23秒前
烟花应助LLLL采纳,获得30
25秒前
小杨发布了新的文献求助10
25秒前
zho应助xyg采纳,获得10
26秒前
LXYSB发布了新的文献求助10
26秒前
yf完成签到 ,获得积分10
28秒前
SciGPT应助ccalvintan采纳,获得10
28秒前
28秒前
vvv完成签到 ,获得积分10
30秒前
苏苏完成签到,获得积分10
32秒前
34秒前
34秒前
34秒前
lixia完成签到 ,获得积分10
36秒前
LLLL发布了新的文献求助30
40秒前
小元发布了新的文献求助10
41秒前
英俊的铭应助27小天使采纳,获得30
42秒前
43秒前
46秒前
若水完成签到,获得积分10
47秒前
W-w应助Capybara采纳,获得10
47秒前
房房不慌完成签到 ,获得积分10
47秒前
槿浅完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212146
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201