Single-Atom Cu Channel and N-Vacancy Engineering Enables Efficient Charge Separation and Transfer between C3N4 Interlayers for Boosting Photocatalytic Hydrogen Production

光催化 材料科学 光诱导电荷分离 制氢 石墨氮化碳 量子效率 氮化碳 光化学 催化作用 化学 光电子学 人工光合作用 有机化学
作者
Jiachao Shen,Chenghui Luo,Shanshan Qiao,Yuqing Chen,Yanhong Tang,Jieqiong Xu,Kaixing Fu,Dingwang Yuan,Haifang Tang,Hao Zhang,Chengbin Liu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (9): 6280-6288 被引量:120
标识
DOI:10.1021/acscatal.2c05789
摘要

Polymeric carbon nitride (C3N4) has attracted great attention in photocatalysis due to its low-cost, visible-light response, and environment-friendly merits. However, the catalytic efficiency of pristine bulk C3N4 is severely limited by its poor photoinduced electron/hole pair separation and interlayer charge transport. Herein, single-atom Cu is bridged into C3N4 sheet interlayers through the thermal condensation of self-assembly supramolecules of Cu precursors and melamine–cyanuric acid monomers. Simultaneously, N vacancies are engineered into C3N4 only by gradient temperature. The single-atom Cu bridges serve as electron channels to promote photoinduced electron/hole pair separation and interlayer charge transport. The experimental results and calculations demonstrate that N vacancies break the symmetry of pristine C3N4, allowing more electrons to pass through the delocalized π-conjugated network of C3N4 to Cu sites, which facilitates charge transfer between C3N4 layers, resulting in more effective separation of electron/hole pairs, optimal charge distribution, and lower hydrogen evolution barrier. As a result, the photocatalyst at a stationary point with a 1 wt % Pt cocatalyst presents a high visible-light photocatalytic hydrogen production rate (11.23 mmol g–1 h–1), reaching a high apparent quantum yield of 31.60% at 420 nm. It is noted that the photocatalyst still exhibits a high hydrogen production rate of 605.15 μmol g–1 h–1 in the absence of the Pt cocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助包容的香菱采纳,获得10
3秒前
斯文明杰发布了新的文献求助10
3秒前
YanZhe完成签到,获得积分10
3秒前
子凡应助洁净的向南采纳,获得10
3秒前
hysmoment完成签到,获得积分10
3秒前
Hello应助hulala采纳,获得10
4秒前
博士发布了新的文献求助10
4秒前
丘比特应助小卡比采纳,获得10
5秒前
乐观的涵菱完成签到,获得积分10
7秒前
9秒前
转眼快十年完成签到,获得积分10
10秒前
10秒前
10秒前
俏皮的安萱完成签到 ,获得积分10
11秒前
梦华完成签到 ,获得积分10
11秒前
13秒前
阿姨洗铁路完成签到 ,获得积分10
13秒前
期待完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
科研通AI5应助Logom采纳,获得10
15秒前
15秒前
Hello应助mieao采纳,获得10
17秒前
123完成签到,获得积分10
17秒前
hulala发布了新的文献求助10
18秒前
19秒前
20秒前
动漫大师发布了新的文献求助30
20秒前
21秒前
yjjh发布了新的文献求助40
22秒前
23秒前
华仔应助rrr采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
慕青应助科研通管家采纳,获得10
23秒前
NPG应助科研通管家采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385