Collaborative optimization design for district distributed energy system based on energy station and pipeline network interactions

管道(软件) 管道运输 能量(信号处理) 数学优化 尺寸 遗传算法 Dijkstra算法 计算机科学 流量网络 能源消耗 工程类 实时计算 模拟 最短路径问题 机械工程 数学 图形 艺术 视觉艺术 电气工程 统计 理论计算机科学
作者
Yingjun Ruan,Tingting Xu,Guangyue Chen,Weiguo Zhou,Jiawei Yao,Fanyue Qian,Chenyu Huang,Meng Hua
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:100: 105017-105017 被引量:2
标识
DOI:10.1016/j.scs.2023.105017
摘要

District distributed energy systems (DDESs) are widely used worldwide due to their environmentally-friendly and energy-saving characteristics. The strong correlation and coupling of energy stations and pipeline networks lead to difficulties in the collaborative optimization design of the DDES. To minimize the total annual cost of the system, this research proposed a collaborative optimization model to realize the integrated design of the DDES. The energy distance method is combined with the K-means cluster method to solve the problem of locating and sizing energy stations. The pipelines planning algorithm based on "Dijkstra algorithm (DA) + genetic algorithm (GA)" is used to optimize the pipeline layout and diameter simultaneously. The improved DA method continuously updates the cost full adjacency matrix and pipe diameter matrix of each pipe segment by optimizing the access sequence of user nodes, and finally obtains the optimal layout and pipe diameter of the pipe network at the same time. Moreover, this paper reveals the influence factors that should be considered in the planning of DDES, such as the number of energy station and flow velocity. The results indicate that compared to traditional optimization processes, the collaborative method proposed in this paper reduced the total annual cost of the pipeline network by 20.5 %. The improved DA method solves the problem of pipeline sharing while preventing the system from falling into local optima. Moreover, optimizing the number of energy stations and flow velocity can reduce annual cost of pipelines by 0–14 % and 0–20 %, respectively. This study provides theoretical guidance and technical support for researchers in the planning and designing of DDES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linmu完成签到 ,获得积分10
刚刚
关尔匕禾页完成签到,获得积分10
4秒前
5秒前
彭于晏应助孤独机器猫采纳,获得10
5秒前
8秒前
8秒前
大模型应助科研长颈鹿采纳,获得10
9秒前
11秒前
llllxj完成签到,获得积分20
13秒前
16秒前
HJJHJH发布了新的文献求助10
16秒前
18秒前
19秒前
fff完成签到 ,获得积分10
22秒前
tsukinineko完成签到,获得积分10
23秒前
深情安青应助TT2022采纳,获得10
23秒前
追寻啤酒发布了新的文献求助10
24秒前
午见千山应助手抓饼啊采纳,获得30
24秒前
大个应助小不采纳,获得10
26秒前
kiki完成签到 ,获得积分10
27秒前
30秒前
小粒橙完成签到 ,获得积分10
31秒前
tsukinineko发布了新的文献求助10
32秒前
33秒前
卿君完成签到,获得积分10
33秒前
34秒前
大个应助Master采纳,获得10
35秒前
ZZ发布了新的文献求助10
35秒前
39秒前
矮小的向雪完成签到 ,获得积分10
39秒前
aasd7jkl发布了新的文献求助10
39秒前
41秒前
隔壁巷子里的劉完成签到 ,获得积分10
41秒前
金金发布了新的文献求助10
42秒前
42秒前
研友_VZG7GZ应助ningmeng采纳,获得10
46秒前
46秒前
47秒前
Master发布了新的文献求助10
47秒前
可爱的函函应助huzi采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751