Possible Alternatives: Identifying and Quantifying Adulteration in Buffalo, Goat, and Camel Milk Using Mid-Infrared Spectroscopy Combined with Modern Statistical Machine Learning Methods

牛奶 支持向量机 偏最小二乘回归 数学 人工智能 食品科学 机器学习 模式识别(心理学) 统计 计算机科学 生物
作者
Chu Chu,Haitong Wang,Xuelu Luo,Peipei Wen,Liangkang Nan,Chao Du,Yikai Fan,Dengying Gao,Dongwei Wang,Zhuo Yang,Guochang Yang,Li Liu,Yongqing Li,Bo Hu,Zunongjiang Abula,Shujun Zhang
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:12 (20): 3856-3856 被引量:15
标识
DOI:10.3390/foods12203856
摘要

Adulteration of higher priced milks with cheaper ones to obtain extra profit can adversely affect consumer health and the market. In this study, pure buffalo milk (BM), goat milk (GM), camel milk (CM), and their mixtures with 5–50% (vol/vol) cow milk or water were used. Mid-infrared spectroscopy (MIRS) combined with modern statistical machine learning was used for the discrimination and quantification of cow milk or water adulteration in BM, GM, and CM. Compared to partial least squares (PLS), modern statistical machine learning—especially support vector machines (SVM), projection pursuit regression (PPR), and Bayesian regularized neural networks (BRNN)—exhibited superior performance for the detection of adulteration. The best prediction models for the different predictive traits are as follows: The binary classification models developed by SVM resulted in differentiation of CM-cow milk, and GM/CM-water mixtures. PLS resulted in differentiation of BM/GM-cow milk and BM-water mixtures. All of the above models have 100% classification accuracy. SVM was used to develop multi-classification models for identifying the high and low proportions of cow milk in BM, GM, and CM, as well as the high and low proportions of water adulteration in BM and GM, with correct classification rates of 94%, 100%, 100%, 99%, and 100%, respectively. In addition, a PLS-based model was developed for identifying the high and low proportions of water adulteration in CM, with correct classification rates of 100%. A regression model for quantifying cow milk in BM was developed using PCA + BRNN, with RMSEV = 5.42%, and RV2 = 0.88. A regression model for quantifying water adulteration in BM was developed using PCA + PPR, with RMSEV = 1.70%, and RV2 = 0.99. Modern statistical machine learning improved the accuracy of MIRS in predicting BM, GM, and CM adulteration more effectively than PLS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanzhang完成签到 ,获得积分10
刚刚
刚刚
jjqqqj发布了新的文献求助10
1秒前
今后应助dd99081采纳,获得10
1秒前
hZC发布了新的文献求助10
2秒前
肘子杨完成签到,获得积分10
3秒前
Abi发布了新的文献求助10
5秒前
19829888207发布了新的文献求助20
6秒前
FashionBoy应助hZC采纳,获得10
6秒前
xixi完成签到 ,获得积分10
6秒前
8秒前
8秒前
幸福的羿完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
小蘑菇应助小郑小郑采纳,获得20
11秒前
zhangdamiao发布了新的文献求助10
12秒前
MineMine完成签到,获得积分10
12秒前
颗粒完成签到,获得积分10
12秒前
姜姜姜发布了新的文献求助10
13秒前
悦耳的树叶完成签到 ,获得积分10
14秒前
14秒前
14秒前
乐乐应助李欣采纳,获得10
14秒前
15秒前
醉熏的蓝血完成签到 ,获得积分10
15秒前
xx发布了新的文献求助10
15秒前
wanci应助Abi采纳,获得10
16秒前
17秒前
18秒前
肘子杨发布了新的文献求助10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
19秒前
木直完成签到,获得积分20
19秒前
英姑应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284941
求助须知:如何正确求助?哪些是违规求助? 3812379
关于积分的说明 11941834
捐赠科研通 3458875
什么是DOI,文献DOI怎么找? 1896986
邀请新用户注册赠送积分活动 945639
科研通“疑难数据库(出版商)”最低求助积分说明 849351