GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changjun完成签到,获得积分10
刚刚
刚刚
eee完成签到,获得积分10
1秒前
徐doc完成签到 ,获得积分10
1秒前
ss13l完成签到,获得积分10
1秒前
斯奈克发布了新的文献求助10
2秒前
ryan1300完成签到 ,获得积分10
4秒前
SHuEvan完成签到,获得积分10
5秒前
12345完成签到 ,获得积分10
7秒前
7秒前
zh完成签到 ,获得积分10
8秒前
hawaii66完成签到 ,获得积分10
8秒前
wxiao完成签到,获得积分10
9秒前
fwz完成签到,获得积分10
9秒前
lmq完成签到 ,获得积分10
9秒前
杨老师完成签到 ,获得积分10
9秒前
小天狼星完成签到,获得积分10
10秒前
默默的皮牙子完成签到,获得积分10
11秒前
慧喆完成签到 ,获得积分10
13秒前
xxf1002完成签到 ,获得积分10
14秒前
无与伦比完成签到,获得积分10
15秒前
你好完成签到,获得积分10
15秒前
poplar完成签到,获得积分10
16秒前
maofeng完成签到,获得积分10
16秒前
后陡门的夏天完成签到 ,获得积分10
16秒前
千寻完成签到 ,获得积分10
18秒前
MJMO完成签到,获得积分10
18秒前
CDQ完成签到,获得积分10
20秒前
吃树的坏考拉完成签到,获得积分10
20秒前
张小度ever完成签到 ,获得积分10
20秒前
海盗完成签到,获得积分10
20秒前
Sophie完成签到 ,获得积分10
21秒前
21秒前
xin_you完成签到,获得积分10
21秒前
科研通AI2S应助shouyu29采纳,获得10
21秒前
silsotiscolor完成签到,获得积分10
22秒前
玩命的外套完成签到,获得积分10
22秒前
迪鸣完成签到,获得积分10
23秒前
neuarcher完成签到,获得积分10
23秒前
老六完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784865
求助须知:如何正确求助?哪些是违规求助? 3330123
关于积分的说明 10244465
捐赠科研通 3045505
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759557