Omics-based deep learning approaches for lung cancer decision-making and therapeutics development

肺癌 癌症 组学 生物 计算生物学 生物信息学 医学 肿瘤科 遗传学
作者
Thi-Oanh Tran,Thanh Hoa Vo,Nguyen Quoc Khanh Le
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:16
标识
DOI:10.1093/bfgp/elad031
摘要

Abstract Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助科研同行采纳,获得10
1秒前
Gaopkid发布了新的文献求助10
2秒前
2秒前
灰灰完成签到,获得积分10
2秒前
可爱的函函应助芋芋采纳,获得10
3秒前
玊尔发布了新的文献求助10
4秒前
石破天惊完成签到,获得积分10
5秒前
purple完成签到 ,获得积分10
5秒前
淡然宛凝发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
zhangxr发布了新的文献求助10
6秒前
稳重发布了新的文献求助10
8秒前
坏猫完成签到 ,获得积分10
8秒前
Ava应助ZhuoCui采纳,获得10
8秒前
哈哈发布了新的文献求助10
10秒前
xred发布了新的文献求助30
10秒前
10秒前
10秒前
支初晴完成签到 ,获得积分10
12秒前
zhangxr完成签到,获得积分10
13秒前
14秒前
1604531786完成签到,获得积分10
14秒前
敖江风云发布了新的文献求助10
14秒前
Demi发布了新的文献求助10
16秒前
18秒前
斯文败类应助马里奥采纳,获得10
19秒前
酷波er应助诗轩采纳,获得10
19秒前
19秒前
19秒前
19秒前
桐桐应助向觅夏采纳,获得10
21秒前
ljy给ljy的求助进行了留言
21秒前
22秒前
zzh发布了新的文献求助10
22秒前
23秒前
TiY发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807374
求助须知:如何正确求助?哪些是违规求助? 3352125
关于积分的说明 10357380
捐赠科研通 3068170
什么是DOI,文献DOI怎么找? 1684876
邀请新用户注册赠送积分活动 809979
科研通“疑难数据库(出版商)”最低求助积分说明 765840