Axial super-resolution optical coherence tomography via complex-valued network

光学相干层析成像 计算机科学 分辨率(逻辑) 宽带 光学 算法 干涉测量 带宽(计算) 连贯性(哲学赌博策略) 人工智能 物理 电信 量子力学
作者
Lingyun Wang,Si Chen,Linbo Liu,Xue Yin,Guohua Shi,Jianhua Mo
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (23): 235016-235016 被引量:7
标识
DOI:10.1088/1361-6560/ad0997
摘要

Abstract Optical coherence tomography (OCT) is a fast and non-invasive optical interferometric imaging technique that can provide high-resolution cross-sectional images of biological tissues. OCT’s key strength is its depth resolving capability which remains invariant along the imaging depth and is determined by the axial resolution. The axial resolution is inversely proportional to the bandwidth of the OCT light source. Thus, the use of broadband light sources can effectively improve the axial resolution and however leads to an increased cost. In recent years, real-valued deep learning technique has been introduced to obtain super-resolution optical imaging. In this study, we proposed a complex-valued super-resolution network (CVSR-Net) to achieve an axial super-resolution for OCT by fully utilizing the amplitude and phase of OCT signal. The method was evaluated on three OCT datasets. The results show that the CVSR-Net outperforms its real-valued counterpart with a better depth resolving capability. Furthermore, comparisons were made between our network, six prevailing real-valued networks and their complex-valued counterparts. The results demonstrate that the complex-valued network exhibited a better super-resolution performance than its real-valued counterpart and our proposed CVSR-Net achieved the best performance. In addition, the CVSR-Net was tested on out-of-distribution domain datasets and its super-resolution performance was well maintained as compared to that on source domain datasets, indicating a good generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
1秒前
肖遥发布了新的文献求助10
3秒前
独特的追命应助姜禾晚烟采纳,获得10
8秒前
9秒前
Owen应助陈泽彬采纳,获得20
10秒前
11秒前
NexusExplorer应助榴下晨光采纳,获得10
12秒前
jing完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
发发发布了新的文献求助10
17秒前
18秒前
姜姜姜姜发布了新的文献求助10
19秒前
binu发布了新的文献求助10
19秒前
23秒前
23秒前
li发布了新的文献求助10
24秒前
MDZZZZZ发布了新的文献求助10
27秒前
kk完成签到,获得积分10
27秒前
bkagyin应助漠池采纳,获得10
27秒前
zixian发布了新的文献求助10
28秒前
28秒前
songyu完成签到,获得积分10
29秒前
李爱国应助li采纳,获得10
31秒前
yl发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
35秒前
jeronimo完成签到,获得积分10
37秒前
丘比特应助发发采纳,获得10
37秒前
janeZ发布了新的文献求助30
40秒前
mio发布了新的文献求助10
40秒前
陈泽彬发布了新的文献求助20
41秒前
荡南桥发布了新的文献求助10
41秒前
42秒前
42秒前
脑洞疼应助李承洲采纳,获得10
48秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777469
求助须知:如何正确求助?哪些是违规求助? 4108782
关于积分的说明 12710414
捐赠科研通 3830598
什么是DOI,文献DOI怎么找? 2112943
邀请新用户注册赠送积分活动 1136641
关于科研通互助平台的介绍 1020628