Developing an Electroencephalography-Based Model for Predicting Response to Antidepressant Medication

依西酞普兰 舍曲林 医学 队列 重性抑郁障碍 萧条(经济学) 西酞普兰 抗抑郁药 随机对照试验 5-羟色胺再摄取抑制剂 临床试验 精神科 病人健康调查表 内科学 焦虑 心情 抑郁症状 经济 宏观经济学
作者
Benjamin Schwartzmann,Prabhjot Dhami,Rudolf Uher,Raymond W. Lam,Benício N. Frey,Roumen Milev,Daniel J. Müller,Pierre Blier,Cláudio N. Soares,Sagar V. Parikh,Gustavo Turecki,Jane A. Foster,Susan Rotzinger,Sidney H. Kennedy,Faranak Farzan
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (9): e2336094-e2336094 被引量:5
标识
DOI:10.1001/jamanetworkopen.2023.36094
摘要

Untreated depression is a growing public health concern, with patients often facing a prolonged trial-and-error process in search of effective treatment. Developing a predictive model for treatment response in clinical practice remains challenging.To establish a model based on electroencephalography (EEG) to predict response to 2 distinct selective serotonin reuptake inhibitor (SSRI) medications.This prognostic study developed a predictive model using EEG data collected between 2011 and 2017 from 2 independent cohorts of participants with depression: 1 from the first Canadian Biomarker Integration Network in Depression (CAN-BIND) group and the other from the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) consortium. Eligible participants included those aged 18 to 65 years who had a diagnosis of major depressive disorder. Data were analyzed from January to December 2022.In an open-label trial, CAN-BIND participants received an 8-week treatment regimen of escitalopram treatment (10-20 mg), and EMBARC participants were randomized in a double-blind trial to receive an 8-week sertraline (50-200 mg) treatment or placebo treatment.The model's performance was estimated using balanced accuracy, specificity, and sensitivity metrics. The model used data from the CAN-BIND cohort for internal validation, and data from the treatment group of the EMBARC cohort for external validation. At week 8, response to treatment was defined as a 50% or greater reduction in the primary, clinician-rated scale of depression severity.The CAN-BIND cohort included 125 participants (mean [SD] age, 36.4 [13.0] years; 78 [62.4%] women), and the EMBARC sertraline treatment group included 105 participants (mean [SD] age, 38.4 [13.8] years; 72 [68.6%] women). The model achieved a balanced accuracy of 64.2% (95% CI, 55.8%-72.6%), sensitivity of 66.1% (95% CI, 53.7%-78.5%), and specificity of 62.3% (95% CI, 50.1%-73.8%) during internal validation with CAN-BIND. During external validation with EMBARC, the model achieved a balanced accuracy of 63.7% (95% CI, 54.5%-72.8%), sensitivity of 58.8% (95% CI, 45.3%-72.3%), and specificity of 68.5% (95% CI, 56.1%-80.9%). Additionally, the balanced accuracy for the EMBARC placebo group (118 participants) was 48.7% (95% CI, 39.3%-58.0%), the sensitivity was 50.0% (95% CI, 35.2%-64.8%), and the specificity was 47.3% (95% CI, 35.9%-58.7%), suggesting the model's specificity in predicting SSRIs treatment response.In this prognostic study, an EEG-based model was developed and validated in 2 independent cohorts. The model showed promising accuracy in predicting treatment response to 2 distinct SSRIs, suggesting potential applications for personalized depression treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun完成签到 ,获得积分10
2秒前
逆流的鱼完成签到 ,获得积分10
2秒前
喵了个咪完成签到 ,获得积分10
3秒前
白昼の月完成签到 ,获得积分0
10秒前
大胆的忆寒完成签到 ,获得积分10
10秒前
hsrlbc完成签到,获得积分10
11秒前
guhao完成签到 ,获得积分10
18秒前
Zz完成签到 ,获得积分10
18秒前
六一儿童节完成签到 ,获得积分10
22秒前
破晓之照完成签到,获得积分10
24秒前
崩溃完成签到,获得积分10
25秒前
Shrimp完成签到 ,获得积分10
25秒前
海边的曼彻斯特完成签到 ,获得积分10
33秒前
姚芭蕉完成签到 ,获得积分0
42秒前
SY完成签到,获得积分10
1分钟前
L_x完成签到 ,获得积分10
1分钟前
卿玖完成签到 ,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
wzxx完成签到 ,获得积分10
1分钟前
月涵完成签到 ,获得积分10
1分钟前
舒心的青槐完成签到 ,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得30
1分钟前
活泼山雁完成签到,获得积分10
1分钟前
辛夷完成签到,获得积分10
1分钟前
superspace完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
淡定的健柏完成签到 ,获得积分10
1分钟前
carly完成签到 ,获得积分10
1分钟前
忧伤的慕梅完成签到 ,获得积分10
2分钟前
香蕉觅云应助富贵小粉猪采纳,获得10
2分钟前
平凡中的限量版完成签到,获得积分10
2分钟前
AdventureChen完成签到 ,获得积分10
2分钟前
GG完成签到 ,获得积分10
2分钟前
大陆完成签到,获得积分10
2分钟前
巨人的背影完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402429
捐赠科研通 3077212
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743