Facial Expression Recognition in-the-Wild Using Blended Feature Attention Network

Softmax函数 判别式 特征(语言学) 人工智能 模式识别(心理学) 面部表情 表达式(计算机科学) 特征提取 计算机科学 面子(社会学概念) 面部识别系统 人工神经网络 社会科学 语言学 哲学 社会学 程序设计语言
作者
Mohan Karnati,Ayan Seal,Joanna Jaworek-Korjakowska,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:12
标识
DOI:10.1109/tim.2023.3314815
摘要

Facial expression analysis plays a crucial role in various fields, such as affective computing, marketing, and clinical evaluation. Despite numerous advances, research on facial expression recognition (FER) has recently been proceeding from confined lab circumstances to in-the-wild environments. FER is still an arduous and demanding problem due to occlusion and pose changes, intra-class and intensity variations caused by illumination, and insufficient training data. Most state-of-the-art approaches use entire face for FER. However, the past studies on psychology and physiology reveals that mouth and eyes reflect the variations of various facial expressions, which are closely related to the manifestation of emotion. A novel method is proposed in this study to address some of the issues mentioned above. Firstly, modified homomorphic filtering is employed to normalize the illumination, then the normalized face image is cropped into five local regions to emphasize expression-specific characteristics. Finally, a unique blended feature attention network (BFAN) is designed for FER. BFAN consists of both residual dilated multi-scale feature extraction module and spatial and channel-wise attention modules. These modules help to extract the most relevant and discriminative features from the high-level and low-level features. Then, both feature maps are integrated and passed on to the dense layers followed by a softmax layer to compute probability scores. Finally, the Choquet fuzzy integral is applied to the computed probability scores to get the final outcome. The superiority of the proposed method is exemplified by comparing it with eighteen existing approaches on seven benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好大一个赣宝完成签到,获得积分10
刚刚
1秒前
zheng发布了新的文献求助10
2秒前
4秒前
大模型应助樂酉采纳,获得10
4秒前
董小李完成签到,获得积分10
5秒前
果汁儿完成签到 ,获得积分10
5秒前
哈哈发布了新的文献求助10
5秒前
木木枭发布了新的文献求助10
6秒前
6秒前
甜甜莫言完成签到 ,获得积分10
8秒前
虚心怜阳发布了新的文献求助10
9秒前
mjc完成签到 ,获得积分10
9秒前
aabsd完成签到,获得积分10
10秒前
Mathilda发布了新的文献求助10
10秒前
16秒前
Mathilda完成签到,获得积分10
20秒前
cc发布了新的文献求助10
20秒前
LinkWakeUp完成签到,获得积分10
21秒前
Akim应助沁晨采纳,获得10
24秒前
情怀应助tigerli采纳,获得10
24秒前
嵇如雪完成签到,获得积分10
24秒前
26秒前
fengfenghao完成签到,获得积分10
28秒前
32秒前
叶子发布了新的文献求助10
32秒前
32秒前
代泡泡发布了新的文献求助10
36秒前
哈哈发布了新的文献求助10
37秒前
无花果应助景绝义采纳,获得10
37秒前
黑豆也应助013采纳,获得10
38秒前
LYN发布了新的文献求助10
39秒前
iNk应助KevenDing采纳,获得20
39秒前
茄子肉末先生完成签到 ,获得积分10
40秒前
孝顺的班完成签到,获得积分20
42秒前
领导范儿应助代泡泡采纳,获得10
43秒前
44秒前
xiatian完成签到,获得积分20
45秒前
niulugai完成签到,获得积分10
46秒前
zy完成签到,获得积分10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347937
捐赠科研通 3066112
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205